

Impact of Modeling and Simulation on Drug Product Life Cycle Management

Liang Zhao, PhD

Division Director

Division of Quantitative Methods & Modeling

Office of Research and Standards, Office of Generic Drugs, CDER/FDA

2021 Annual ISQP Conference

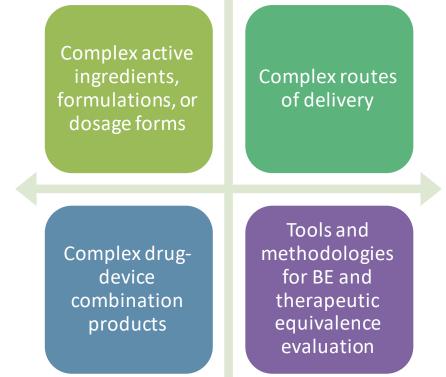
November 4-6, 2021

Agenda

- Summary of impacts of modeling and simulation (M&S) on regulatory activities
- Summary of GDUFAII M&S related grants and contracts
- Case Example: Association of partial systemic exposure and abuse potential for opioid analgesics with abuse deterrence labeling claims supporting product specific guidance
 - <u>https://www.thelancet.com/pdfs/journals/eclinm/PIIS2589-5370(21)00415-6.pdf</u>

Quantitative Methods & Modeling (QMM) for Generic Drug Development and Approval

Model integrated evidence (MIE) refers to using model generated information such as the virtual bioequivalence (VBE) study results not just to plan a pivotal study but to serve as pivotal evidence


QMM/MIE Impact Various Regulatory Activities in the Office of Generic Drugs (CY 2020), Critically Supported by GDUFA Regulatory Science

		0 1 1/			
		Туре	No.	Exam	nples
Segulatory		ANDA Review Consults	15	*	Particle size distribution space for BE assessment; dose scale analysis with data censoring; model-based CE BE analysis
		Pre-ANDA Meetings	52	*	Topical dermatological/orally inhaled/long-acting injectable products
		Controlled Correspondences	64	*	Evaluation of alternative BE approaches to the CE study for locally acting products
	s C	leared for 2021 BE Guidance	GD 11+	ŲF/	A Regulatory Science Workshop Presentation PSGs: New/revised guidance on modified release products; use of pAUC as an additional BE metrics (e.g., methylphenidate)
Research	Γ	Internal Regulatory Research Projects	56	* * *	Assessment of PD endpoints for BE evaluation BE evaluation methods (e.g., higher-order crossover design, group/batch effects) BE study interruption during COVID-19 pandemic
		New Contracts and Grants in GDUFA II since 10/2017	35	* *	Development of model-informed BE for complex generic drugs Modeling platform development (e.g., long acting injectables, sparse sampling) Development of PBPK model for locally-acting drug products Characterizing safety and efficacy of generic drugs, and expanding BCS class 3 waivers

www.fda.gov ANDA, abbreviated new drug application; BE, bioequivalence; CE, clinical endpoint; PK, pharmacokinetic; PD, pharmacodynamics; PBPK, physiologically based PK₄PSG, product-specific guidance; BCS, Biopharmaceutics Classification System; pAUC, partial area under the curve.

GDUFA II Regulatory Science Priorities

Quick Summary of Research Topics and Outcomes

Based on regulatory research activities reports published by Office of Generic Drugs

	Grant #	Study Title	Institute	Start Date	End Date
Locally-Acting		Development of hybrid CFD-PBPK models for a bsorption of	Applied Research		
	1U01FD005201	intranasal corticosteroids	Associates, Inc.	9/10/2014	2/28/2018
PBPK Modeling		A predictive multiscale computational tool for simulation of			
I DI K Modeling		lung absorption and pharmacokinetics and optimization of			
	1U01FD005214	pulmonary drug delivery	CFD Corporation	9/10/2014	3/28/2018
		An integrated multiscale-multiphysics modeling and simulatio	n		
		of ocular drug delivery with whole-body pharmacokinetic			
	1U01FD005219	response	CFD Corporation	9/10/2014	3/31/2018
		Physiologically based pharmacokinetic model for drugs			
	1U01FD005206	encapsulated into liposomes	University of Buffa	09/10/2014	5/31/2018
		Development and validation of dermal PBPK modeling platform	n		
		toward virtual bioequivalence assessment considering			0 10 1 10 0 10
	1U01FD005225	population variability	Simcyp, Ltd.	9/10/2014	8/31/2018
Outcomes	1U01FD005211	PBPK modeling and simulation for ocular dosage forms	Simulations Plus	9/10/2014	8/31/2018
• 45 Journal articles		Physiologically based biopharmaceutics and pharmacokinetics	S University of South	ı	
• 52 Presentations	1U01FD005232	of drug products for dermal absorption in humans	Australia	9/10/2014	2/28/2019
• 52 Presentations	HHSF2232018102		Simulations Plus,		
 34 Posters 	Р	Simulation Plus Ophthalmic ointment implemenation	Inc.	8/21/2018	11/30/2019
		Enhancing the reliability, efficiency, and us ability of Bayesian	Colorado State		
• 2 PSGs	1U01FD005838	populationPBPKmodeling	University	9/10/2016	8/31/2020
		Evaluating Relationships Between In Vitro Nasal Spray	Virginia		
	HHSF22320181014	14 Characterization Test Metrics for Bioequivalence and Nasal	Commonwealth		
	С	Deposition In Silico and In Vitro	University	9/28/2018	7/30/2021
		Development of Computational Models to Predict Delivery of			
		Inhalation Drug Powders: from Deagglomeration in Devices to			
	1U01FD006525	Deposition in Airways	University of Sydne	ey 9/1/2018	8/31/2021
arance Note: Based on	regulatory	Formulation drug product quality attributes in dermal		e of Ge	neric Dr
		dermatological drug products and transdermal delivery	Simulations Plus,		
www.fda.gov	1U01FD006526	systems (U01)	Inc.	9/1/2018	8/31/2021

Quantitative Clinical Pharmacology

Dr

	Grant #	Study Title	Institute	Start Date	End Date
	1U01FD00519	Pharmacometric modeling and simulation for generic drug 2s ubstitutability evaluation and post marketing risk assessment	University of Maryland	9/10/20142	/28/2018
Outcomes	1U01FD00518	Population pharmacokinetic and pharmacodynamic, dose-toxicity 8modeling and simulation for narrow therapeutic index (NTI) drugs	•	9/10/20142	/28/2018
• 27 Journal articles		Pharmacokinetic and pharmacodynamic (PK-PD) studies of 5cardiovascular drugs	University of Florida	9/10/20148	/31/2018
• 48 Presentations	3U01FD00521 -03S1	0A model and system based approach to efficacy and safety questions related to generic substitution	University of Florida	9/10/20148	/31/2018
 26 Posters 38 PSGs 	1U01FD00544	Data-fusion based platform development of population PKPD modeling and statistical analysis for bioequivalence assessment of 4long-acting injectable products	f University of Massachusetts	9/15/20158	/31/2018
• 1 General guidance		Development of PBPK simulation for long-acting injectable 3microspheres	Simulations Plus		
	1U01FD00587	5Generic Drug Substitution in Special Populations	Auburn University Inst Nat Sante E	9/5/2016 8	/31/2018
	HHSF2232016 0110C	LEvaluation of model-based bioequivalence statistical approaches for sparse design PK studies	La Recherche Medicale (INSERM)	9/29/20163	/30/2019
	HHSF2232015	1 Computational drug delivery: leveraging predictive models to	, , ,		
airaince Note: Baised on re	gunacory	researchvactivities reports publishe Pharmacometric modeling of immunosuppressants for evaluation	University of	COLOLA (MICHIC ⁹ L
www.fda.gov	1U01FD00519	1of bioequivalence criteria	Utah	9/10/20142	/29/2020

Oral Absorption Models and BE

3U01FD004979- 02S3-P2 Effect o Evaluat	Study Title ion of In Vivo Performance for Oral Solid Dosage Forms f Excipient Transporter Interactions on BCS Class Drugs tion of formulation dependence of drug-drug interaction oton pump inhibitors (PPIs) for oral extended-release	University of Michigan University of California Sar Francisco	9/27/201311/15/2017
C Predict 3U01FD004979- 02S3-P2 Effect o Evaluat	f Excipient Transporter Interactions on BCS Class Drugs tion of formulation dependence of drug-drug interaction	Michigan University of California Sar Francisco	9/27/201311/15/2017 n
3U01FD004979- 02S3-P2 Effect o Evaluat	f Excipient Transporter Interactions on BCS Class Drugs tion of formulation dependence of drug-drug interaction	University of California Sar Francisco	n
02S3-P2 Effect o Evaluat	tion of formulation dependence of drug-drug interaction	California Sar Francisco	n
02S3-P2 Effect o Evaluat	tion of formulation dependence of drug-drug interaction	Francisco	
Evaluat	tion of formulation dependence of drug-drug interaction		4/15/2014 3/31/2018
		1	· · ·
	oton numn inhibitors (DDIs) tor oral extended release		
		Biopharma	0 40 1004 0 0 40 10040
I-HHSF22301001T drugpr			9/19/2016 9/18/2018
	Predictive Dissolution (IPD) to Advance Oral Product ivalence (BE) Regulation	University of Michigan	9/30/2015 9/30/2018
	pehavior and transformation kinetics of a poorly water	WIICHIgan	9/30/2013 9/30/2018
	weakly basic drug upon transit from low to high pH	Purdue	
 23 Presentations HHSF223201710137soluble C condition 	, , , , , , , , , , , , , , , , , , , ,	University	9/29/2017 3/28/2019
41 Posters Formul	ation, processing and performance interrelationship for		-, -,, -,
	nous solid dispersions	University	9/10/2014 8/31/2019
Wireles	ss Sampling Pill to Measure in Vivo Drug Dissolution in G		
4 General guidances Tractar	nd Computational Model To Distinguish Meaningful		
HHSF223201510146Produc	t Quality Differences and Ensure Bioequivalence (BE) in	University of	
C Patient		Michigan	9/30/2015 8/31/2020
	, Development, Implementation and Validation of a		
	nistic Physiologically-based Pharmacokinetic (PBPK)		
	vork for the Prediction of the In Vivo Behaviour of		
ance Note: Based on regulations frestard	h'activities feports published	by Offic	

www.fda.gov

Patient Substitution of Generic Drugs

	Grant#	Study Title	Institute	Start Date	End Date
	1U01FD004899	Bioequivalence and Clinical Implications of Generic Bupropion	Washington University	9/15/2013	2/28/2018
	1U01FD005192	Pharmacometic modeling and simulation for generic drug substitutability evaluation and post marketing risk assessment	University of Maryland		2/28/2018
	1U01FD005875	Generic Drug Substitution in Special Populations	Auburn University	9/5/2016	8/31/2018
 Outcomes 30 Journal articles 	1U01FD005235	Pharmacokinetic and pharmacodynamic (PK-PD) studies of cardiovascular drugs	University of Florida	9/10/2014	8/31/2018
 12 Presentations 	3U01FD005210- 03S1	A model and system based approach to efficacy and safety questions related to generic substitution	University of Florida	9/10/2014	8/31/2018
• 13 Posters	1U01FD005274	Transplant outcomes using generic and brand name immunosuppressants: studying medications used by people	Arbor Research	0/10/2014	8/31/2018
	1U01FD005274	who have received kidney and liver transplants Generic Drug Substitution in Special Populations	Auburn University	<u> </u>	8/31/2018
	HHSF22320140018 8C	Characterization of epilepsy patients at-risk for adverse outcomes related to switching antiepileptic drug products	University of Maryland		9/29/2018
rance Note: Based on	regulatory r 1001FD005191	evaluation of bioequivalence criteria	•	Ce of G 9/10/2014	eneric [

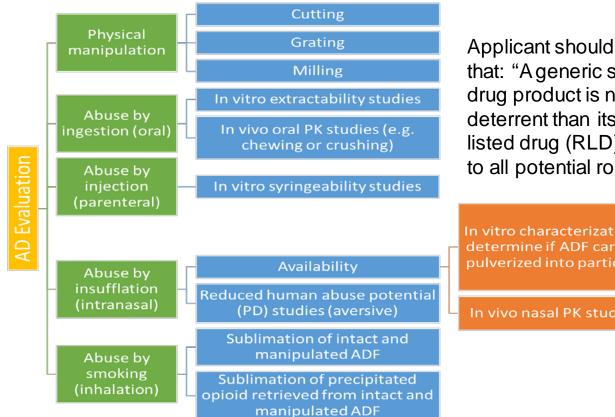
www.fda.gov

Data Analytics

	Grant#	Study Title	Institute	Start Date End Date
			University of	
	3U01FD004979-02S3		California San	
	P1	Molecular Properties of Excipients	Francisco	4/15/2014 3/31/2018
			Brigham &	
		Novel approaches for confounding control in observational	Women's	
	1U01FD005555	studies of generic drugs	Hospital	9/15/2015 8/31/2018
		Comparative Surveillance of Generic Drugs by Machine	Marshfield Clinic	·
	HHSF2232015101120		Inc.	9/30/2015 9/29/2018
Outcomes	1U01FD005556	Structural nested models for assessing the safety and effectiveness of generic drugs	Johns Hopkins University	9/15/2015 2/28/2019
	100110005550	Characterizing safety and efficacy of brand and generic drugs	Oniversity	9/15/2015 2/20/2019
 23 Journal articles 		used to treat hypothyroidism a mong patients who switch		
15 Presentations	1U01FD005938-A11		Yale-Mayo CERS	I 5/28/2019 9/30/2020
		Developing Tools Based on Text Analysis and Machine	· · ·	
• 7 Posters	75F40119C10106	Learning to Enhance PSG Review Efficiency	Drexel University	y9/30/2019 9/29/2021
		Software Development Services for Bioequivalence Review	FUTREND	
	75F40120F80605	AssistanceTool	TechnologyInc	9/30/2020 9/29/2021
		Developing Tools Based on Text Analysis and Machine		
	75F40119C10106	Learning to Enhance PSG Review Efficiency	Drexel University	y9/30/2019 9/29/2022
\sim		Use of instrumental variable approaches to assess the safety		
		and efficacy of brand-name and generic drugs used to treat	Vala Maya CEDC	17/20/2010 0/21/2022
	1U01FD005938-A10		rate-iviayo CERSI	17/20/2018 8/31/2023
arance Note: Based on r	Equiatory re 1001FD005938-A2	searchinactivities for publishe generic drugs used to treat hypothyroidism	Yale-Mayo CERS	Ce of Generic 15/5/2017 8/31/2023

www.fda.gov

Case Example: Association of Partial Systemic Exposure and Abuse Potential for Opioid Analgesics with Abuse Deterrence Properties


• Background

www.fda.gov

- General Principles for Evaluating the Abuse Deterrence (AD) of Generic Solid Oral Opioid Drug Products –2017 FDA Guidance (https://www.fda.gov/downloads/Drugs/.../Guidances/UCM492172.pdf)
- Product-specific guidances (PSGs) for Hydrocodone, Oxycodone, and Morphine ER formulation with AD properties (https://www.fda.gov/drugs/guidancecomplianceregulatoryinformation/guidances/ucm075207.htm)
- Consult Office of New Drugs at FDA for new drug applications
- PK-PD analysis to support PK metrics determination for comparative PK studies to evaluate AD
 - PK metrics to evaluate AD potential based on PK-PD relationship

Zhao et al, EclinicalMedicine 41 (2021) 101135. https://www.thelancet.com/pdfs/journals/eclinm/PIIS2589-5370(21)00415-6.pdf Clearance Note: Slides also cleared in 2019 for ASCPT presentation

Overview of General Guidance for Generic AD Opioids

Applicant should demonstrate that: "Ageneric solid oral opioid drug product is no less abuse deterrent than its reference listed drug (RLD) with respect to all potential routes of abuse"

In vitro characterization: determine if ADF can be pulverized into particles

In vivo nasal PK studies

Clearance Note: Slides cleared in 2019 for ASCPT presentation www.fda.gov

What PK Metrics Should Be Used to Compare Brand vs Generic AD?

	aft Guidance on Hydrocodone Bitartrate
Active Ingredient:	Hydrocodone bitartrate
Dosage Form; Route:	Tablet; extended release; oral
Recommended Studies:	Two bioequivalence studies (1–2) and two in vivo comparative pharmacokinetic (PK) studies for abuse deterrence assessment (3 4)
 Design: Single-dose, two Strength: 60 mg Subjects: Males and non Additional Comments: S can discriminate between identified. Determine rel under-the-curve (AUC₀₄ Applicants should submi data. Type of study: Fasting, o products, consistent with <i>Evaluating the Abuse Du</i> evaluation of abuse by in Design: Single-dose, two Strength: 60 mg Subjects: Non-dependen Additional Comments: 1 ethical steps to protect h physically dependent on seeking or undergoing th the study could make thh Study 3. Pulverize test a and tolerable for human content, and particle sizz 	somparative oral PK study of chewed drug products p-treatment, two-period crossover in vivo -pregnant, non-lactating females, general population Gee comments in Study 1. Patient-relevant chewing coolitio, that in test and reference products' ability of deterring chewing rould be evant PK parameters including maximum concentration (corg), are and AUC ₀₋₀ , and time to maximum concentration (corg), it partial AUCs (e.g., AUC _{0-3 hours} and AUC _{0-4 hours} resupportive comparative nasal PK study with physically miniputed drug in the recommendations in FDA's guidance, " <i>General Principles for</i> <i>eterrence of Generic Solid Oral Opioid D fug reducts</i> ," for tier 2 nsufflation as applicable o-treatment, two-period crossover it vivo at recreational opioid users, general population ¹ See all comments in Study 1. Take scientifically appropriate and uman subjects. This should include ensuring that each subject is no opioids (e.g., through a naloxone challenge test) and has not been reatment for abuse of controlled substances such that participating i and reference products to a particle size range that is considered safe insufflation studies. Characterize the formulation recovery, drug e distribution of physically manipulated test and reference drug al PK study using validated analytical procedures.

PK metrics included in 7 PSGs for Morphine, Oxycodone, and Hydrocodone:

"Determine relevant PK parameters including maximum concentration (Cmax), area-under-the-curve (AUCO-t and AUCO-∞), and time to maximum concentration (Tmax). Applicants should submit partial AUCs (e.g., AUCO-3 hours and AUCO-4 hours) as supportive data"

What PK Metrics Should Be Used to Compare Brand vs Generic AD?

- Comparable C_{max} and AUC may not be sufficient in evaluating abuse deterrence
 - C_{max} and AUC are not significantly correlated with drug abuse potential endpoints (i.e., drug liking and take drug again)
- Additional BE metric can support generics to be no less AD than RLD
 - Literature reports suggest that the rate of rise of drug concentration contributes to differential abuse potential among drugs, formulations, and routes of administration
- Analysis only limited to data from non-combination product using antagonist or product with aversive agent

The Identification of Appropriate PK Metrics Related to Abuse Potential

PK Metrics

- Cmax: Maximum Drug Concentration
- Tmax: Time to reach to Cmax
- AUC: Area Under Curve
- AQ: Abuse quotient Cmax/Tmax
- PAUCx: Partial AUC for time 0 to x

Drug Abuse Potential

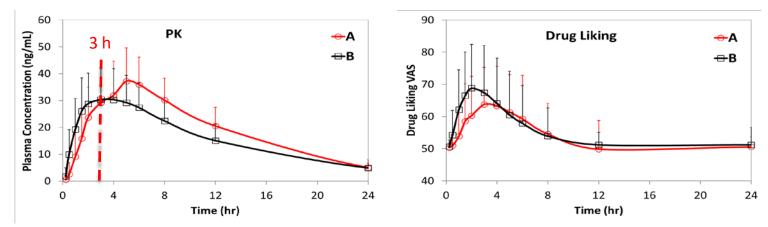
- VAS: Visual analogue scale
- TDA: VAS for take drug again
- DL: VAS for drug liking
- PAUECx: Partial AUC for DL from time 0 to x
- MAXTDA: maximum TDA
- MAXDL: maximum DL

Research Goal

- Explore potential relationships between PK metrics, especially measures of the ascending part of the PK curve, and opioid abuse potential
- Implement the identified PK metrics in PSGs for AD evaluation

Summary of randomized, double-blind, placebocontrolled crossover clinical abuse potential trials

Trial	Opioid	Dose,	Route	Last sampling	No. of PK	No. of P	Dpoints	No. of	subjects
		mg*		time, hr	points	DL	TDA	PK	PD
01	Oxycodone	30	IN	24	10	8	2	29	30
02	Oxycodone	40	IN, PO	36	14	12	2	36	36
03	Oxycodone	40	PO	36	13	12	2	47	38
04	Oxycodone	30	IN, PO	24	15	13	2	31	29
05	Hydrocodone	60	PO	36	15	15	2	39	35
06	Hydrocodone	60	IN	36	16	15	2	27	25
07	Hydrocodone	45	IN, PO	48	20	19	2	41	34
08	Hydrocodone	45	PO	72	18	17	1	41	42
09	Morphine	60	IN, PO	24	13	11	2	27	25
10	Morphine	60	PO	24	12	11	2	39	38
11	Morphine	60	IN, PO	24	16	13	2	46	46

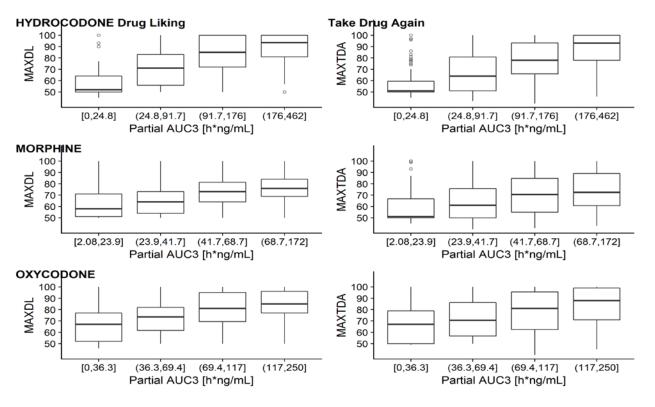

Zhao et al, EclinicalMedicine 41 (2021) 101135.

https://www.thelancet.com/pdfs/journals/eclinm/PIIS2589-5370(21)00415-6.pdf

www.fda.gov

Clearance Note: Slides also cleared in 2019 for ASCPT presentation

Use of Early pAUC in Addressing Comments from Branded Industry Working Group

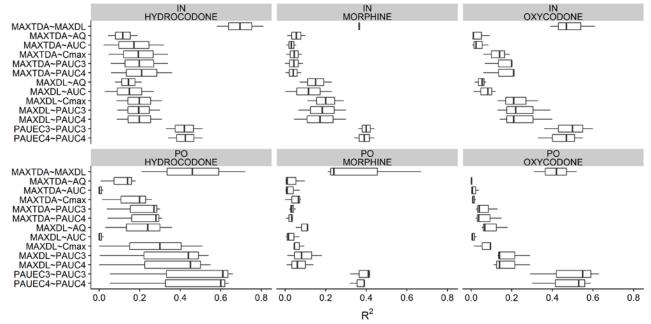


- BIWG commented that compared to A, B had lower Cmax, but produced greater MAXDL
- Geometric mean ratio (A/B)
 - pAUC3: 0.66 (90% CI: 56.49-76.48%)
 - pAUC4: 0.76 (90% CI: 66.71-87.50%)

Clearance Note: Slides cleared in 2019 for ASCPT presentation

PK/PD Curves Adapted from the presentation by Jeffrey M. Dayno in 2016 FDA Public Meeting on Pre-Market Evaluation of Abuse-Deterrent Properties of Opioid Drug Products.

Correlation between VAS and Categorized PAUC3 for Each API

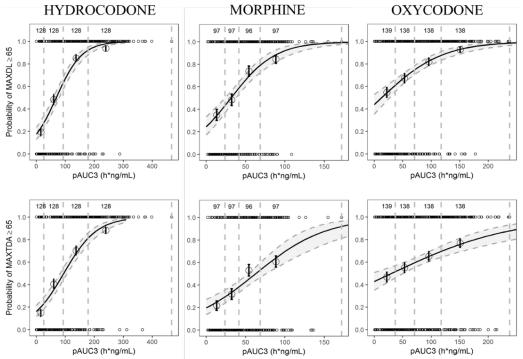


Zhao et al, EclinicalMedicine 41 (2021) 101135.

www.fda.gov

https://www.thelancet.com/pdfs/journals/eclinm/PIIS2589-5370(21)00415-6.pdf Clearance Note: Slides also cleared in 2019 for ASCPT presentation

Highest Correlation between Early PAUEC and Early PAUC among PK/PD Metrics



- PK metrics: Cmax, AUC, AQ, PAUC3, PAUC4
- PD metrics: MAXDL, MAXTDA, PAUEC3, PAUEC4
- R²: variation in a PD metric that can be explained by a PK metric using a linear regression model

www.fda.gov

Zhao et al, EclinicalMedicine 41 (2021) 101135. https://www.thelancet.com/pdfs/journals/eclinm/PIIS2589-5370(21)00415-6.pdf Clearance Note: Slides also cleared in 2019 for ASCPT presentation 21

Association of PAUC3 and PD Metrics

Logistic regression analysis based on the pooled data, greater PAUC3 values was associated with greater probability of maximum Drug Liking VAS≥65 and the probability of maximum Taking Drug Again VAS ≥80.

www.fda.gov

Zhao et al, EclinicalMedicine 41 (2021) 101135. https://www.thelancet.com/pdfs/journals/eclinm/PIIS2589-5370(21)00415-6.pdf

Case Conclusions

• In vivo PK studies are part of generic ADF recommendations for bioequivalence assessment

• Based on the identified PK-PD relationship for opioid abuse potential, current PSGs recommend using partial AUCs as supportive measures of AD

 Ongoing internal assessment to further understand the relationships among formulation parameters, PK metrics, and PD endpoints as measures of abuse potential

www.fda.gov

Take Home Message

- The GDUFA regulatory science has been advancing and introducing novel quantitative methods and modeling approaches to the community
- Leveraging these new methods advancement in drug development offers new opportunities and values

Acknowledgement

- FDA
- Office of Research and Standards, OGD/CDER/FDA
 - Robert Lionberger, Office Director
 - Lei Zhang, Office Deputy
- All Contributing Scientists, ORS/OGD/CDER/FDA
- All FDA Grantees and Contractors

