

FEV1 Based Bioequivalence Study for Inhaled Corticosteroids

AAPS/EUFEPS GLOBAL BIOEQUIVALENCE HARMONIZATION INITIATIVE (GBHI): 4TH INTERNATIONAL WORKSHOP

Presenter: Liang Zhao, Ph.D. Division of Quantitative Methods and Modeling Office of Research and Standards, Office of Generic Drugs, CDER/FDA

Outline

 FDA's Current Recommendations of Comparative Clinical Endpoint Bioequivalence (BE) Studies for Developing Generic Orally Inhaled Drug Products (OIDPs)

- Published Product-Specific Guidances (PSGs)
- Justification for currently recommended endpoints
- Variability and Dose-Response Relationship Using FEV₁ As a BE Metric in Comparative Clinical Endpoint BE Studies of OIDPs
 - Observed Variability
 - Study Sample Sizes
 - Dose-Response Relationship

Summary and Future Outlooks

Challenges in OIDP Generic Drug Development

- The forced expiratory volume in 1 second (FEV₁) is generally considered as a pharmacodynamic (PD) or clinical endpoint for most OIDPs
- High between-subject variations in FEV₁ have been reported
- High between-subject variabilities in FEV₁ leads to the requirement of large sample sizes for BE studies

Published PSGs & Active Ingredients

Published PSGs

Category	# PSGs	# without PSGSs
Inhalation Solution - Aerosol metered (pMDI) - Local Action	4	2
Inhalation Suspension - Aerosol Metered (pMDI)- Local Action	9	2
Inhalation Powder (DPI) - Local Action	15	8
Inhalation - Total – PSGs	28	12

Active Ingredients

Aclidinium Bromide Albuterol Sulfate Beclomethasone Dipropionate Budesonide Budesonide Formoterol; Fumarate Dihydrate Ciclesonide Fluticasone Furoate Fluticasone Furoate Fluticasone furoate; Vilanterol Trifenatate Fluticasone Propionate Fluticasone Propionate Salmeterol Xinafoate As of November 21, 2019

Formoterol Fumarate Mometasone Furoate Glycopyrrolate Indacaterol Maleate Ipratropium Bromide Levalbuterol Mometasone Furoate Tiotropium Bromide Umeclidinium Bromide Epinephrine Flunisolide Umeclidinium; Vilanterol

Recommendations in PSGs

Drug Products	Formulation	Primary Endpoint(s) ^{a)}	Study Design	Treatment Duration	Study Population
Fluticasone Furoate; Vilanterol Fluticasone Proprionate; Salmeterol Xinafoate	DPI DPI, MDI	FEV ₁ AUC ₀₋₁₂ (first day)	Parallel	4 weeks	Asthma
Budesonide; Formoterol Fumarate Dihydrate	MDI	Trough FEV ₁ (last day)	Parallel	6 weeks	Asthma
Salmeterol Xinafoate Glycopyrrolate Formoterol Fumarate	DPI DPI	FEV ₁ AUC ₀₋₁₂	Parallel / Crossover ^{b)}	Single-dose	Asthma COPD Asthma
Indacaterol Maleate Tiotropium Bromide Umeclidinium Bromide	DPI DPI DPI	FEV ₁ AUC ₀₋₂₄	Parallel / Crossover ^{b)}	Single-dose	COPD
Aclidinium Bromide Ipratropium Bromide	DPI MDI	FEV ₁ AUC ₀₋₆	Parallel / Crossover ^{b)}	Single-dose	COPD
Beclomethasone Dipropionate Budesonide Fluticasone Furoate Fluticasone Propionate Mometasone Furoate	MDI DPI DPI DPI, MDI DPI, MDI	Trough FEV ₁ (last day)	Parallel	4 weeks	Asthma
Ciclesonide	MDI		Parallel	8 weeks	Asthma
Albuterol Sulfate Levalbuterol	MDI, DPI MDI	PC ₂₀ (PD ₂₀)	Crossover	>4 visits (wash-out ≥ 24 hours)	Asthma

<u>Abbreviations</u>: MDI, metered dose inhaler; DPI, dry pow der inhaler; AUC, including area under the serial FEV₁-time curve; COPD, chronic obstructive pulmonary disease; PC_{20} or PD_{20} , provocation concentration or dose producing a 20% fall in FEV₁.

a) The above FEV1 based endpoints are baseline-adjusted. Equivalence is evaluated based on T/R ratio for the primary endpoint. The 90% confidence intervals for the T/R ratios for the BE study endpoint should fall within 80.0-125.0%, except PC₂₀, which is 67.0-150.0% ^{b)} PSG recommends that the study should include appropriate justification for the design chosen.

A General Design for the Comparative Clinical Endpoint BE Study of Inhaled Corticosteroids (1) Fluticasone Propionate DPI

Recommendation in PSG

Type of study: Comparative clinical endpoint BE study

<u>Design</u>: A randomized, multiple-dose, placebo-controlled, parallel-group design, consisting of a 2-week placebo run-in period followed by a 4-week treatment period of the placebo, T, or R drug product

Dose: 0.044 mg/INH, two inhalations twice daily

Study Design

A minimum of 3 visits to the clinic should be scheduled:

a. At start of the run-in period (Visit 1); b. At the start of the randomized treatment, after the 2-week run-in period (Visit 2); and c. At week 4 of treatment (Visit 3)

Run-in Period	Treatment Period		
Visit 1 (Day -14)	Visit 2 (Day 1)	Visit 3 (Day 28)	
Placebo given BID via the T drug product	Fluticasone propionate given BID via the R drug product OR Fluticasone propionate given BID via the T drug product OR Placebo given BID via the T drug product		

A General Design for the Comparative Clinical Endpoint BE Study of Inhaled Corticosteroids (2) Fluticasone Propionate DPI

BE study endpoints

- FEV₁ measured in the morning prior to the dosing of inhaled medications on the last day of the 4-week treatment
- The above primary endpoint should be baseline adjusted (change from baseline)
- An FEV1 baseline is defined as the average of pre-dose FEV1 values of at least two time points measured in the morning of the first day of a 4-week treatment period
- Sampling is recommended to correspond to the same time of day as used on the last day of a 4-week treatment

Equivalence based on:

- T/R ratio for the primary endpoint
- The 90% confidence intervals for the T/R ratio for the primary endpoint should fall within the limits of 80.00 125.00%

Assumed vs. Observed CV (%) of Trough FEV_1

Assumed vs. Observed CV (%) of $FEV_1 AUC$

Data source: 5 ANDA submissions which have available spirometry data **Sample size in the clinical studies ranged from 800 to 1500.**

Observed Variability

*CV, coefficient of variation; $AUC_{0.12}$ and $AUC_{0.24}$ were used per PSG recommendations.

Data Analysis on FEV1-based Metrics

- ANCOVA models: For 4 out of 5 ANDA submissions, the ANCOVA models were fitted for each primary endpoint and least square (LS) means were derived for each treatment for the primary endpoints.
 - The LS means from the ANCOVA models for each endpoints were used to generate ratios (LS mean of treatment group/LS mean of reference group).
 - Two-sided CIs was generated for the ratios for each endpoint.
 - If the two-sided 90% CIs for the ratios were wholly contained within the interval 80.00% to 125.00% then the bioequivalence of test drugs was concluded.
- **Fixed effects**: treatment, study center and region
- Covariates: Demographic factors (e.g., age, height), and baseline FEV₁

Simulation Inferred Sample Size Estimations

Sample size to achieve 80% power to pass bioequivalence, based on the observed CV%s and a true T/R ratio of 105%

➢ <u>N=1,584-1,862*</u>

With a fixed sample size (n=1,000), what are the maximum difference in FEV₁ metrics which pass BE with 80% power?

≻ <u>3.87%</u>

The sample size calculated are dauntingly large to demonstrate BE based on currently observed variabilities using FEV₁-based metrics.

Performance of FEV1-Based Metrics for BE Assessment

- Costly due to large sample size trials
 High variabilities
- Sensitivity to detect difference in product performance is in large dependent on the location of approved doses on the dose-response curves
 - Difficult to differentiate random effect from effect of drug bioavailability at the site of action in clinical performance if approved doses locate in the plateau portion of the dose-response curves

Summary on Dose-Response Relationships

Product Name	Clinical ;Endpoint	Approved dose range (mcg)	Dose-Response relationship
Fluticasone Propionate	Trough FEV ₁	100 - 500	Not significant
Tiotropium Bromide	Trough FEV ₁	18	The approved dose lies on or near the upper flat portion of the dose- response curve.
Fluticasone Furoate; Vilanterol	$FEV_1 AUC_{0-12}$ Trough FEV_1 ,	100 – 200; 25	There were no reports documenting the dose-response.
Fluticasone Propionate; Salmeterol Xinafoate	$FEV_1 AUC_{0-12}$ Trough FEV_1	50	Not significant (As the fold change in response between doses ranged from 1.06 – 1.35)
Beclomethasone Dipropionate	Trough FEV_1	40 - 80	Lack of established D-R relationship
Mometasone Fuorate	Trough FEV ₁	50 – 100	Both of the higher doses in this trial appear to be on the plateau of a dose-response curve across the three MDI doses
Aclidinium Bromide DPI	FEV1 AUC0-6h	400	Shallow D-R relationships of both the PD endpoints for all approved doses
Budesonide; Formoterol	FEV ₁ AUC ₀₋₁₂ Trough FEV ₁	80 – 160; 4.5	 Budesonide: lack of established D-R relationship Formoterol: clear D-R relationship

The dose-response relationship was being analyzed by fitting the data into the E_{max} model.

ED₅₀: 10 times lower than lowest dose

E_{max} model ED₅₀: ~8 times lower than lowest dose

*based on MG/INH, not MG BASE/INH ; NA, not applicable; NS, not significant

- FEV₁-based endpoints are one of the recommended metrics for BE assessment
- High variabilities of FEV₁-based metrics have been observed for inhaled corticosteroid (ICS) OIDPs, leading to the requirement of a large sample size for BE establishment
- The approved ICS dose(s) appears to be at the plateau part of the dose-response relationships, or with ED₅₀ lower than the lowest dosing strengths

Alternatives

- FDA's current PSG recommendations are intended to infer equivalence in regional lung deposition of OIDPs
- FDA's pathway for alternative approaches is via the pre-ANDA meeting process
 - Generic applicants should propose alternative approaches that are more sensitive and efficient than the current recommendations
- Scientific justification should be responsive to the goal of inferring equivalence in regional lung deposition
 - □ Additional in vitro testing + PK?
 - □ Additional in vitro testing + PK + Modeling & Simulation?
 - □ Other PD endpoints?

Acknowledgments

- **ORISE fellow:** Jieon Lee (Key Author of Presentation)
- **ORS-DQMM:** Kairui Feng, Fang Wu, Hezhen Wang, Ross Walenga, Andrew Babiskin, Mingjiang Xu, Michael Wientjes, Myong-Jin Kim
- **ORS-DTP**: Denise S. Conti, Bryan Newman, Liangfeng Han, Elizabeth Bielski, Sneha Dhapare, Markham C. Luke
- **ORS-IO**: Wenlei Jiang, Lei K. Zhang, Robert Lionberger
- **OB/OGD:** Kimberly Witzmann, Ethan Stier, Bing Li, and all other colleagues
- All contributors to PSGs and pre-ANDA meeting packages

BACK-UP SLIDES

ANDA	CV (%)	Power (%)	T/R true ratio	Type 1 error (2- sided)	Total N
Drug A	90	90	0.95	5%	800
Drug B	112	>81	1	5%	1100
Drug C	107-121	80	0.95	5%	1440
Drug D	80	90	0.95	5%	1130
Drug E	100	87.1	0.95	5%	1470*

*Sample size for superiority test was also calculated.

Alternative markers/FEV1 metrics which have bee TDA evaluated drug PSG development

Product Name	Alternative Endpoints	Review Conclusion
Fluticasone furoate; Vilanterol	FeNO, allergen challenge,	
Fluticasone Propionate	asthma stability model,	Lack of D-R relationship
Fluticasone Propionate; Salmeterol Xinafoate	sputum eosinophilia	
	FEV ₁ AUC _{0-6h} (multiple dose)	Required sample size (>5000)
Aclidinium Bromide	FEV ₁ AUC _{0-12h} (multiple dose)	\rightarrow not suitable for BE
	PC ₃₅	determination
	PD ₂₀ , Mean % increase in	
	FEV1	
Salmeterol	Bronchodilatation/Bronchopro	Lack of D-R relationship
	vocation studies	
Glycopyrrolate	E _{max} FEV1 change (Day 1)	Lack of D-R relationship
Beclomethasone Dipropionate	FeNO, PC ₂₀	Lack of D-R relationship
Budnoside; Formoterol	FeNO	No D-R relationship
Ciclesonide	FeNO, PC ₂₀	No D-R relationship

Questions

- Q1. What is a sample size to achieve 80% power to pass bioequivalence (B), assuming CV as 100%, T/R true ratio as 5%?
- Q2. With a fixed sample size (n=1,000), what are maximum differences in FEV₁ metrics which pass BE with 80% power?
- Q3-1. With a 20% difference in FEV₁ metrics, what is a sample size to fail BE test with 80% chance?
- Q3-2. BE Passing Rate (%) vs. sample size based on ANDA datasets
 - Fluticasone Propionate and Salmeterol DPI, (A208891, approved)

Methods

Data

Reference ANDA

- Spirometry data from a reference study
- Per-protocol population
- Calculation of observed variability for the endpoints.

<u>Primary Endpoints</u>: $\Delta AUEC$, $\Delta tFEV1$

Simulation

To address question 3;

 Select a random subset, (various sample size N= 10, 20, 100, 200, 400, 600, 800, 1000, 2000, 2500)

To address questions 1-2;

- A package 'PowerTost' was used to estimate sample size using observed CVs (R ver 3.6.0)
- Sample size was calculated for reference and treatment group.

BE test

- 1000 replicates for calculation of BE passing rate (%)
- BE evaluation for ΔAUEC and tFEV1 in each scenario
- Calculation of BE passing rate
 - Passing rate (%) = (Npass/1000)*100

Simulation Results (3)

Q3. With a 10% difference in FEV_1 metric, what is the sample size to pass BE test with 80% power?

Sample size under 2,476

T/R true ratio	Required sample size (reference + treatment)
1	858
0.95	1120
0.9	2476
0.85	9894
0.825	39570

<u>Note</u>: Simulation was being conducted assuming a fixed 80% power (not 80% chance). To address '80% chances', the BE Passing Rate (%) vs. sample size based on ANDA datasets was simulated using actual datasets, which had 5-12% differences in FEV_1 metrics. (results are being summarized in page 6).

Simulation Results BE Passing Rate (%) using Actual datasets (Fluticasone, N208891) Simulation (replicates 1000 times)

Passing rate (%) = $\frac{Npassing}{Nrep (1000)} * 100$

N*	Passing rate (%) based on AUEC	Passing rate (%) based on tFEV ₁
10	0	0
20	0	0
100	0	0
200	0.5	0
400	37.0	2.7
600	66.5	25.1
800	82.7	48.7
1000	91.7	63.0
1500	98.6	86.1
2000	99.8	96.2
2500	100.0	98.0

N, total sample size of reference group and treatment group

Simulation Results BE Passing Rate (%) using Actual datasets

(Fluticasone, N208891)

FDA

Simulation (replicates 1000 times)

Q3-2. With a observed T/R difference in tFEV₁, what is the sample size to pass BE test with 80% chance?

* Placebo group/discontinuation rate was not being considered.