A Model- & Systems-based Approach to Assess & Ensure Generic Substitution

Liang Zhao, PhD

Division of Quantitative Methods and Modeling Office of Research and Standards OGD/CDER/FDA

Disclosures:

The presenter has no financial interests in any of the presented materials and do not have any financial interests or relationships to disclose.

Learning Objectives:

- Modeling and simulations (M&S) to assess and ensure effective and safe generic sameness via bioequivalence assessment through <u>pre-marketing</u> <u>evaluation</u>
- M&S to assess and ensure generic substitution
 <u>through post-marketing evaluation</u>
- <u>Systems-based approaches</u> to ensure generic substitution

SYM08 Polling Question #1

I am a _____ !

- A. Clinical pharmacologist
- B. Pharmacometrician/Modeler
- C. Pharmacist
- D. Formulation scientist
- E. Professional in regulatory affairs
- F. Physician
- G. Other

Learning Objectives:

- Modeling and simulations (M&S) to assess and ensure effective and safe generic substitution via bioequivalence assessment <u>through pre-marketing</u> <u>evaluation</u>
- M&S to assess and ensure generic substitution through post-marketing evaluation
- <u>Systems-based approaches</u> to ensure generic substitution

Modeling Integrated System for Drug Development

Time 2018 Annual Meeting

Modeling Integrated System for New Drug Development

Modeling Integrated System for Generic Drug Development

AMERICAN COLLEGE OF CLINICAL PHARMACOLOGY Advancing Clinical Care through Pharmacology®

SYM08 Polling Question #2

What stays the same between an NDA and its corresponding ANDA submissions?

- A. Regulatory requirements
- B. Amount of data as included in the ANDA
- C. Underlying models for formulation-PK-PD-clinical response relationships
- D. The application fee

M&S to Assess and Assure Generic Drug Substitutability during Premarketing

- Assist generic drug development
- Support product-specific guidance (PSG) development
- Support Pre-ANDA interactions
- Assist ANDA review
 - To assess risk of bioinequivalence
 - To bridge missing information and data
 - To support alternative BE approaches

Cases will be introduced in the following slides

Use Case: PBPK in Assessing BE in the Presence of Proton Pump Inhibitors (PPIs)

- Prasugrel tablets: for the reduction of the rate of thrombotic cardiovascular events in patients with acute coronary syndrome
- Prasugrel HCI salt tends to convert to prasugrel free base during manufacturing or storage, a process known as disproportionation
- PBPK Models were used to address question regarding threshold value on critical quality attribute to ensure BE

2018 Annual Meeting

Biotransformation Pathway of Prasugrel to its Inactive Intermediate Metabolite (R-95913) and Active Metabolite (R-138727)

- Following oral administration, prasugrel HCl is rapidly hydrolyzed by hydroxyesterases in the intestine to a thiolactone (R-95913), which is then converted to the active metabolite (R-138727) by a single step, primarily by CYP3A4 and CYP2B6 and to a lesser extent by CYP2C9 and CYP2C19.
- R-138727 is further metabolized to two inactive metabolites by Smethylation or conjugation with cysteine (R-119251 and R-106583)

2018 Annual Meeting

Clinical Findings

- Prasugrel HCI products with low (5%), intermediate (58%), and high (70%) degrees of conversion to base were
 - Bioequivalent to each other in terms of C_{max} and AUC of R-138727 with PPI
 - Still bioequivalent for AUC, but not bioequivalent for C_{max} with PPI
 - The mean difference in C max between the low and the high conversion products, the medium and high conversion products, and the low and medium conversion products were 29% (90% confidence internal (CI) 0.62, 0.83), 20% (90% CI 0.69, 0.92), and 10% (90% CI 0.77, 1.04), respectively
- Analysis of the pharmacodynamics of prasugrel HCl product (60 mg) demonstrated that 29% differences in C_{max} may result in a delay of perhaps 20 min in achieving maximal inhibition of platelet aggregation

Question: What will be a conservative control for disproportionation % of prasugrel, when co-administered with PPI?

2018 Annual Meeting

Method

- A dynamic PBPK model was developed and validated for R-95913 and R138727
- The ADAM absorption model was selected with pHdependent solubility, and an effective permeability (P_{eff}) in human was used as input parameters
- The distribution of prasugrel, primary metabolite, and secondary metabolite were described by a minimal PBPK model
 - The minimal PBPK model: a "lumped" model that has four compartments, predicting the systemic, portal vein, liver, and peripheral compartment concentrations
- The dissolution rate from solid dosage forms can be calculated using diffusion layer models (DLM)

2018 Annual Meeting

Observed and simulated values for 60-mg prasugrel HCI product with various levels of free base conversion in healthy subjects with PPI intake

- Intrinsic solubility of prasugrel HCl salt was deconvoluted based on the C_{max}s over the dose range of 10–60 mg for prasugrel HCl products containing 0% base in healthy subjects without taking PPI
- The only data available for prasugrel base are the data points plotted where the products were administered with PPI

2018 Annual Meeting

Virtual BE Simulation Results

- The root mean squared error (RMSE) for R-138727 C_{max} is 0.30 from multiple BE studies submitted to FDA, which was used in BE trial simulations to account for residual variability
- The deconvoluted intrinsic solubility of prasugrel base based on the PK profile of prasugrel HCl formulation containing 58% base for virtual bioequivalence (BE) trial simulation
- The simulation result predicted that 20% free base in the product results in 3% difference in Cmax between reference (0% base) and test product (20% base), which was considered as insignificant with respect to the impact of 20% base on BE evaluation

The sensitivity to detect formulation differences was assessed by comparing the passing rate of C_{max} in each study based on average

Critical quality attribute for salt to base conversion: <20% !

ACCCP AMERICAN COLLEGE OF CLINICAL PHARMACOLOGY Advancing Clinical Care through Pharmacology*

2018 Annual Meeting

Fan et al, AAPS. J. **19** 1479-1486. (2017)

erion

SYM08 Polling Question #3

M&S isn't useful for what aspect of generic development and reviews?

- A. Alternative BE approaches
- **B.** Complex substance evaluation
- C. PK metric determination for BE establishment
- D. Save failed PK BE study

E. Evaluation of BE risks associated with comedication, specific population, and difference in PK curves

Learning Objectives:

- Modeling and simulations (M&S) to assess and ensure effective and safe generic substitution via bioequivalence assessment through <u>pre-marketing</u> <u>evaluations</u>
- M&S to assess and ensure generic substitution through post-marketing evaluations
- <u>Systems-based approaches</u> to ensure generic substitution

Generic Drug Substitutability

- In 2017, OGD received ~640 individual spontaneous case reports related to the quality of generic drugs each month
 - 55% described issues related to switching between brand and generic
- Over the past decade, several observational studies have been published that question the bioequivalence of generic drugs

OGD Regulatory Actions on Three Products Related to Issues of Therapeutic Inequivalence (2011-2016)

- 1. Bupropion Hydrochloride Extended-Release tablets 300 mg Bioequivalence Studies. <u>http://www.fda.gov/Drugs/DrugSafety/ucm322161.htm</u>.
- Methylphenidate Hydrochloride Extended Release Tablets (generic Concerta) made by Mallinckrodt and Kudco. <u>http://www.fda.gov/Drugs/DrugSafety/ucm422568.htm</u>.
- 3. Letter to Healthcare Professionals: Communication on lansoprazole delayed-release orally disintegrating tablets manufactured by Teva Pharmaceuticals. 2011. <u>https://wayback.archive-</u> <u>it.org/7993/20170112031950/http://www.fda.gov/Drugs/DrugSafety/uc</u> <u>m251485.htm</u>

These cases highlight the importance of post marketing evaluation to ensure generic substitutability

SYM08 Polling Question #4

- What isn't useful for a data source in post marketing analysis?
- A. Adverse event report
- **B.** Surveys
- C. Claim database

D. NDA or ANDA data in the application package

E. Electronic health records

Analyzing data for postmarketing surveillance of generics

GDUFAI Regulatory Science on Generic Drug Utilization and Substitution (FYs2013 - 2017)

- A model- and systems-based approach to efficacy and safety questions related to generic substitution (Grant 1U01FD005210, Univ. of Florida)
- Pharmacometric modeling and simulation for generic drug substitutability and post marketing risk assessment (Grant 1U01FD005192, Univ. of Maryland)
- Novel approaches for confounding control in observational studies of generic drugs (Grant 1U01FD005555, Brigham & Women's Hospital)
- Structural nested models for assessing the safety and effectiveness of generic drugs (Grant 1U01FD005556, Johns Hopkins Univ)
- Comparative surveillance of generic drugs by machine learning (Contract HHSF223201510112C, Marshfield Clinic)
- Generic drug substitution in specific populations (Contract 1U01FD005875, IMPAQ International & Auburn Univ.)
- Characterizing use, safety and efficacy of brand-name and generic drugs used to treat hypothyroidism (CERSI-Mayo Clinic/Yale)
- Identify and evaluate manufacturer-level drug utilization and switching patterns in Sentinel (Internal Project)

Case: Sentinel Tool Development

- Sentinel: FDA's active surveillance system for medical products
 - from a distributed data network of 18 data partners
- FDA's Sentinel Initiative deliverables from completed contracts are publicly available
- Existing Sentinel tools were still limited in their ability to study brand and generic switching patterns
- Objective: To develop and implement a modular, reusable tool for describing manufacturer-level drug utilization and switching patterns within the US FDA's Sentinel system

Use Cases: Metoprolol extended release (ER)

- Beta blocker indicated for the treatment of hypertension, angina pectoris, and heart failure
- First generic was approved July 31, 2006
- From 2008-2014, several manufacturers recalled some generic products due to failures in meeting quality standards

F

Results: Metoprolol ER

Monthly Number of New Users, Metoprolol ER

Gagne et al. Drug Saf. 2018 Aug 17. doi: 10.1007/s40264-018-0709-4.

Results: Metoprolol ER

Time to Switch to Generic, Metoprolol ER

2018 Annual Meeting

AMERICAN COLLEGE OF CLINICAL PHARMACOLOGY Advancing Clinical Care through Pharmacology**

Metoprolol ER Summary

- Substantial changes in utilization following several manufacturer-specific production and availability issues
- High rates of switching from two generic products
 that were recalled and later discontinued
- Characterizing and evaluating switching or switchback patterns is an essential exploratory analysis of post-marketing surveillance of generic drugs
- Potential future enhancements

Learning Objectives:

- Modeling and simulations (M&S) to assess and ensure effective and safe generic substitution via bioequivalence assessment through <u>pre-marketing</u> <u>evaluations</u>
- M&S to assess and ensure generic substitution through <u>post-marketing evaluations</u>
- <u>Systems-based approaches</u> to ensure generic substitution

Systems-Based Approach

- Formulation: excipient
- Manufacture
- Systems biology/bioinformatics
- Systems pharmacology
- PBPK models
- PK-PD models/exposure-response models
- Postmarketing signals

Example Workflow for A Systems Approach to Ensure Sameness (1)

Post Marketing (PM) signal as detected by advanced PM evaluation methods from data sources including:

- Sentinel system
- Standalone Claim/EHR databases
- FARES etc

Representative Works from Dr. Stephan Schmidt, Univ. Florida in press/submission (Grant 1U01FD005210)

Physiologically Based Pharmacokinetic Modeling to Evaluate Formulation Factors Influencing Bioequivalence of Metoprolol Extended-Release Products.

A Model and Systems Based Approach to Assess Impact of Changes in Formulation on Dissolution, Pharmacokinetics, Pharmacodynamics and Questions Regarding Generic Equivalence – A Metoprolol Extended Release Case Study

₽

An Example Workflow for A Systems Approach to Ensure Sameness (2)

Epilepsy/transplant community concerns for patients switching to generic antiepileptic drugs/ immunosuppressants

Representative Works under GDUFA regulatory science program:

Tacrolimus (a narrow therapeutic index drug): PBPK model to assess impact of crystallinity extent on the oral absorption of the products; PopPK model was used to characterize PK profiles of different formulations and assess the formulation effect on drug exposure

Lamotrigene: PBPK based IVIVR model to evaluate BE for waived strengths of Lamotrigiene ER ; PopPK model was used to conduct in silico studies to assess equivalence between generics

SYM08 Polling Question #5 What type of information is considered in a systems approach to assess generic drug substitution?

- A. Excipient/ Dissolution profile
- B. Color and shape of the tablet
- C. Systems pharmacology
- D. PBPK model/Exposure-response relationship

E. All

Take Home Message

- M&S are integration of knowledge and experience gained from full product life cycle and should be used as key toolsets to ensure generic drug efficacy and safety
- Although M&S have been mostly used in premarketing stage to ensure quality approval, great needs exist in developing new methods for postmarketing evaluations
- A systems-based approach is a powerful tool by integrating all knowledge together to have an ultimate comprehensive evaluation of bioinequivalence risks that could impact generic drug substitution

Acknowledgement

OGD/ORS/DQMM

- Lanyan Fang
- Zhichuan (Matt) Li
- Satish Sharan
- Andrew Babiskin
- Eleftheria Tsakalozou
- Ross Walenga
- Zhanglin Ni
- Meng Hu
- Myong-Jin Kim
- Other colleagues at DQMM and ORISE fellows

OGD/ORS

- Rob Lionberger
- Lei Zhang

OGD/ORS/DTP

<u>OGD/OB</u>

OSE/OPE/DEPII

Sarah Dutcher

FDA Grantees/Contractors

Highlights of PBPK Impacts

Category	Example Drug	Impact on regulatory decision making
Product quality/dissolution	Celecoxib, Theophylline ER, Metoprolol ER	Impact of dissolution failure on BE
	Ophthalmic emulsions and suspensions	Impact of quality attributes on ocular bioavailability and tear film breakup time
	Warfarin	Impact of tablet aging and dissolution on BE
Mechanism change risks	Venlafaxine ER	Based on dissolution profile and modeling predictions, FDA requested applicant to reformulate the product
Risk assessment for BE extrapolation	Oxybutynin ER	Risk assessment for not conducting lower strength in vivo study when BE is established with higher strength
PPI effect	Nifedipine ER, Paliperidone ER, Prasugrel	Risk assessment of changing drug release to a pH- dependent mechanism
Abuse deterrence	Hydrocodone ER	IVIVC development for chewing deterrence route using artificial chewing apparatus
	Oxycodone ER	Impact of particle size on nasal insufflation utilizing CFD modeling
Clinical endpoint/PD waiver	Diclofenac (topical)	Assessment of dermal PBPK model in place of a comparative clinical endpoint study
	Beclomethasone (inhalation)	Assessment of inhalation PBPK and CFD models (droplet composition and deposition pattern) for purpose of waiving PD study
BCS waivers	BCSIII oral dosage forms	Research into excipients that can affect drug intestinal uptake
PK metrics determination	Mesalamine solid oral dosage forms	Determination of PK metrics for BE evaluation
	thods and Modeling to Modernize Generi	C Drug Development and Review; FDA Public Workshop,

modeling methodologies in generic drug development. May 17th, 2018.

PP

Sοι - 3.

Highlights of QCP Impact

Category	Example Drug	Impact on regulatory decision making
PK metrics determination	Methylphenidate transdermal systems	Recommendation of pAUC for BE assessment to ensure comparable drug concentrations during clinically relevant time windows
BE Study design and BE methodology development via modeling and virtual simulations	Levonorgestrel-releasing intrauterine device	Recommendation of one-year in vivo BE study (90% CI of the residual drug amount within 95.00 - 105.26%) to ensure that residual drug amount at five year is within 80.00 - 125.00%
	Paliperidone extended- release products	Assessment on alternative BE study designs (single dose versus multiple dose studies) and associated BE metrics/limit
BE on clinical endpoint	Brimonidine topical gel	Pharmacodynamic (PD) simulations were used to predict PD and/or therapeutic equivalence at unstudied time points
In vitro BE	Cyclosporine ophthalmic emulsion	Evaluation on particle size distribution to establish BE
BE methodology enhancement	Albuterol inhalation products	Dose-scale methodology on in vivo PD data processing and statistical algorithms
New BE options	Ivermectin topical cream	Recommend two BE options: in vitro/PK or comparative clinical endpoint studies

QCP: quantitative clinical pharmacology;

Sourc

2018 Annual Meeting

Concerc Current Concerce Current Concerce Concerce Concerce Concerce Concerce Current Concerce Concerc