
Value Creation of Big Data from the Regulatory Setting

Liang Zhao, PhD

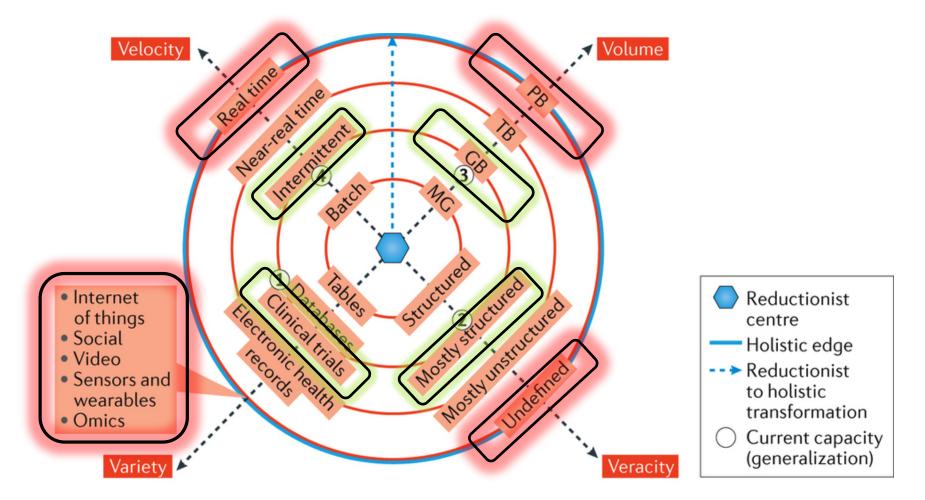
CBA 2017-2018 Workshop Series-3 February 3rd, 2018, Rockville, MD

Disclaimer: My remarks today do not necessarily reflect the official views of the FDA

Human Body are Reality of Big Data

Examples of Big Data Related Activities at Agency

• Real world study


• Human genome-based data

• Post-market evaluations

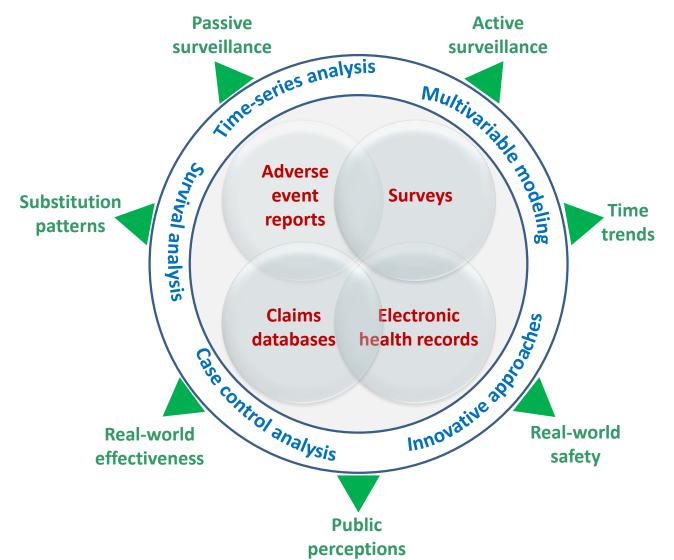
• Precision medicine/Digital health

From Preclinical/Clinical to Real World

Nature Reviews | Drug Discovery

HIVE to Assist Big Data Review on Human Genome-based Data

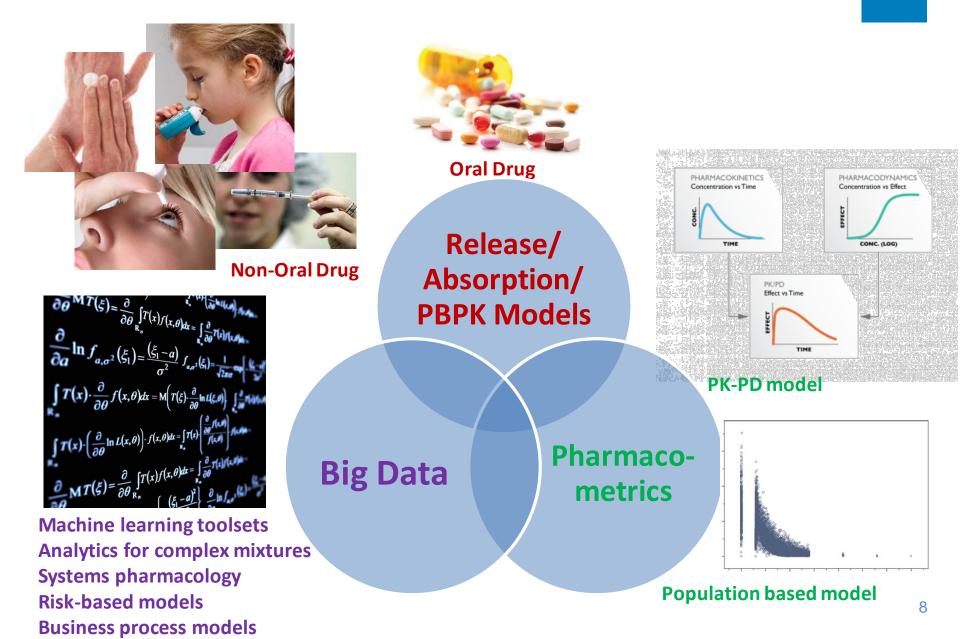
Storage: ~2 Petabytes (comparable to 1 million HD movies), metal + SunGrid
CPU: 1500 cores, extensible to 3000–5000
Network: 10Gb ⇒ Internet2, 40Gb ⇒ Infiniband


Mini-hive: Research and scientific NGS portal with cutting edge production quality tools, White Oak/CBER server room Storage: ~500 Terabytes, metal CPU: ~350 cores Network: wan 1Gb, lan 40 GB

Questions? Contact FDA's Office of Media Affairs at 301-796-4540 or <u>fdaoma@fda.hhs.gov</u>

High-performance computation infrastructure performing NGS bioinformatics computations that are massively parallel (executed on multiple computers simultaneously)

Quantitative Approaches in the Post-Marketing Evaluation of Generics



Digital Health

- Convergence of digital and genomic technologies with health, healthcare, living, and society to enhance the efficiency of healthcare delivery and make medicines more personalized and precise
- Use of information and communication technologies to help address the health problems and challenges faced by patients
- These technologies include both hardware and software solutions and services, including telemedicine, webbased analysis, email, mobile phones and applications, text messages, and clinic or remote monitoring sensors

Big Data vs Conventional Methods

FDA

A Case Example

Big Data to Understand Relationship Between the Biological Targets and Adverse Reactions for TKIs

- Tyrosine kinase inhibitors (TKIs): one of the most important classes of anti-cancer drugs
- Adverse reactions (ARs) by both on-target and off-target effects of TKIs
- Understanding the mechanisms of ARs are important for both drug development and post-market evaluation of other agents
- Past research are mainly based on summarization of clinical practices or in vitro/in vivo experiments
- Meta-analysis intends to take advantage of both vast individual data from registrational Phase 3 studies and the advancement of cutting edge quantitative methodologies

Background

Adverse Reactions of KIs

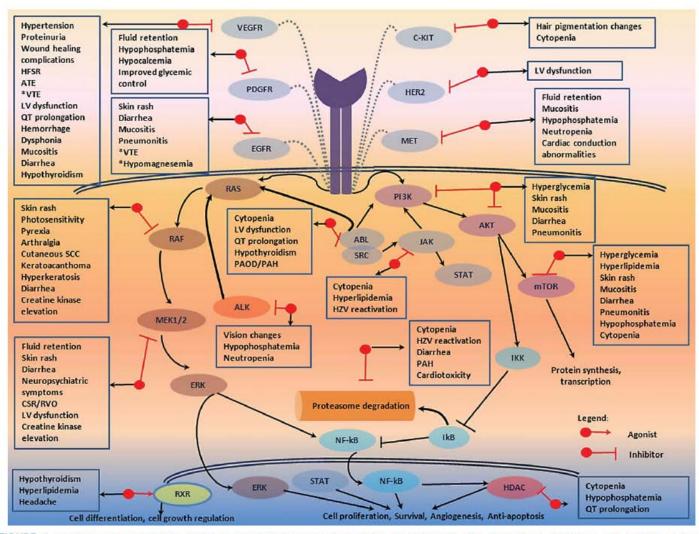
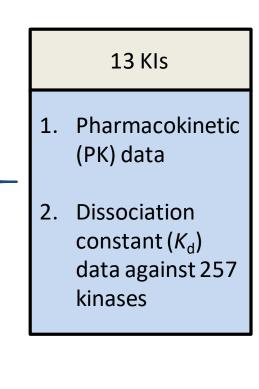


FIGURE 1. Toxicities Associated With Signal Transduction Inhibitors.*Associated predominantly with monoclonal antibodies. ATE indicates arterial thromboembolism; CSR, central serous retinopathy; HZV, herpes zoster virus; LV, left ventricular; PAH, pulmonary arterial hypertension; PAOD, progressive arterial occlusive disease; RVO, retinal vein occlusion; SCC, squamous cell cancer; VTE, venous thromboembolism.

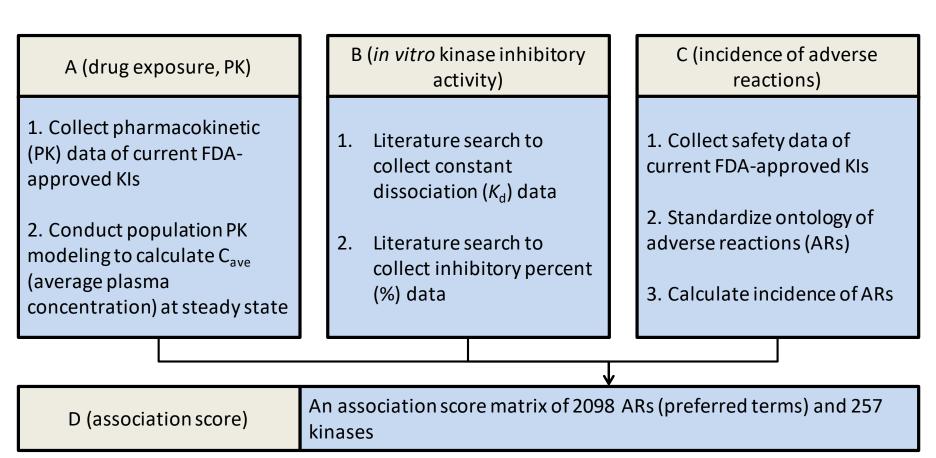
Grace K. Dy and Alex A. Adjei, CA Cancer J Clin 2013; 63: 249–279


Results Data from 17 Kinase Inhibitors

- Incidence of adverse reactions (ARs)
- Inhibitory percent (%) data against 283 kinases

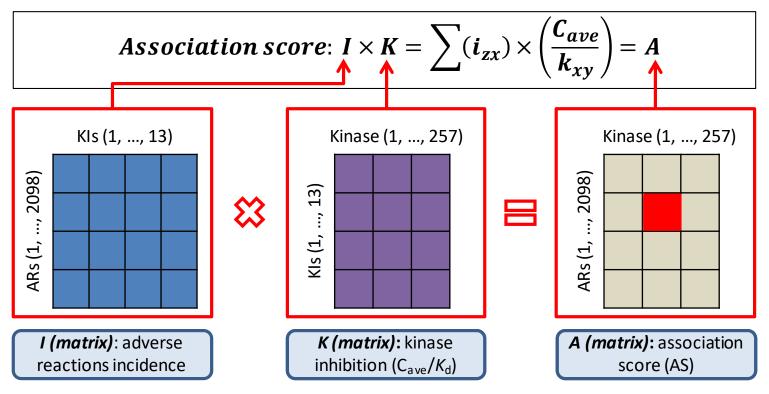
Reference for inhibitory percent data: <u>Uitdehaag JC et al. PLoS One. 2014</u> <u>Mar; 9(3): e92146</u>

Kinase Inhibitors (KIs)			
Axitinib (Inlyta)			
Pazopanib (Votrient)			
Sorafenib (Nexavar)			
Vandetanib (Caprelsa)			
Crizotinib (Xalkori)			
Erlotinib (Tarceva)			
Gefitinib (Iressa)			
Lapatinib (Tykerb)			
Bosutinib (Bosulif)			
Dasatinib (Sprycel)			
Imatinib (Gleevec)			
Nilotinib (Tasigna)			
Sunitinib (Sutent)			
Cabozantinib (Cometriq)			
Ponatinib (Iclusig)			
Regorafenib (Stivarga)			
Afatinib (Gilotrif)			



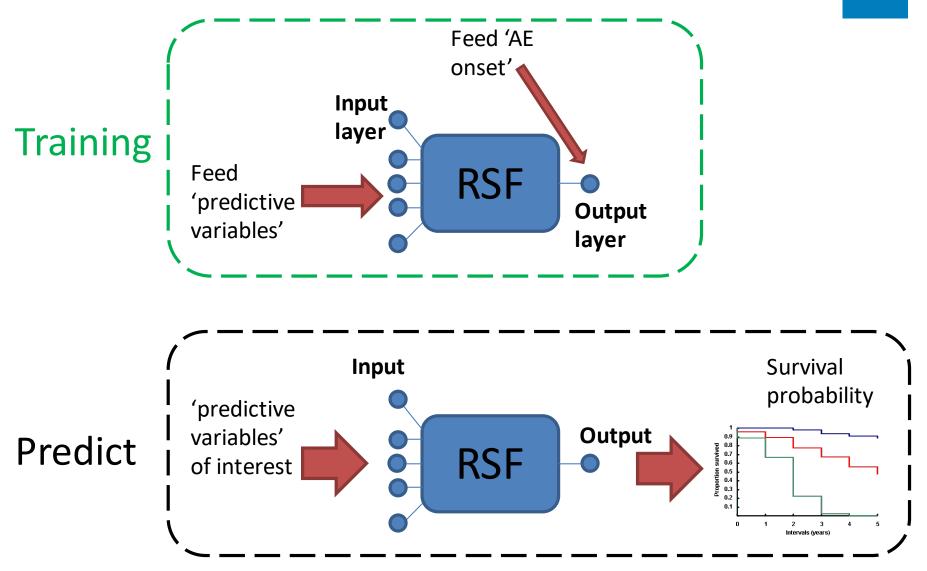
Reference for K_d data: Davis MI et al. Nat Biotechnol. 2011 Oct; 29(11): 1046-51 Karaman MW et al. Nat Biotechnol. 2008 Jan; 26(1): 127-32

Aim and methods


Aim and Methods Outline

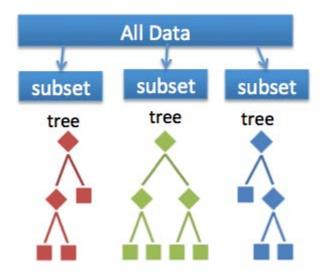
Aim: to assess the association between kinase inhibition and adverse reactions

Methods


Association Score Matrix

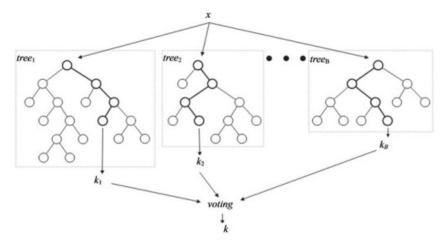
Limitation	A false positive may be included when a high association score was obtained with
	high AR incidence but moderate kinase inhibition.

Solution	After identifying AR associated <u>KIs</u> , only keep the preliminary identified kinases (by
Solution	association score) which can be inhibited with > 95% activity by any identified <u>KIs</u> .


Random Survival Forest

FDA

Random Survival Forest


- Decision survival tree shares the same pitfall with the decision tree, as a 'greedy' algorithm.
- Random survival forest was developed to improve the decision survival tree.

Training

Prediction

FD/

https://mapr.com/blog/predicting-loan-credit-risk-using-apache-spark-machine-learning-random-forests/ http://www.hallwaymathlete.com/2016/05/introduction-to-machine-learning-with.html

Results

4279 pairs of associations involving 534 ARs (preferred terms) and 140 kinases.

Well-established pairs of kinase inhibition and ARs were confirmed:


hypertension – VEGFR2; acneiform rash – EGFR/HER4; conjunctivitis – EGFR; fluid retention – ABL; hepatotoxicity – MET; diarrhea – EGFR; pulmonary hypertension – ABL; QT prolongation – VEGFR; proteinuria – VEGFR.

Visualize the results using a web app: https://jzliu.shinyapps.io/KINASE

Machine Learning Results

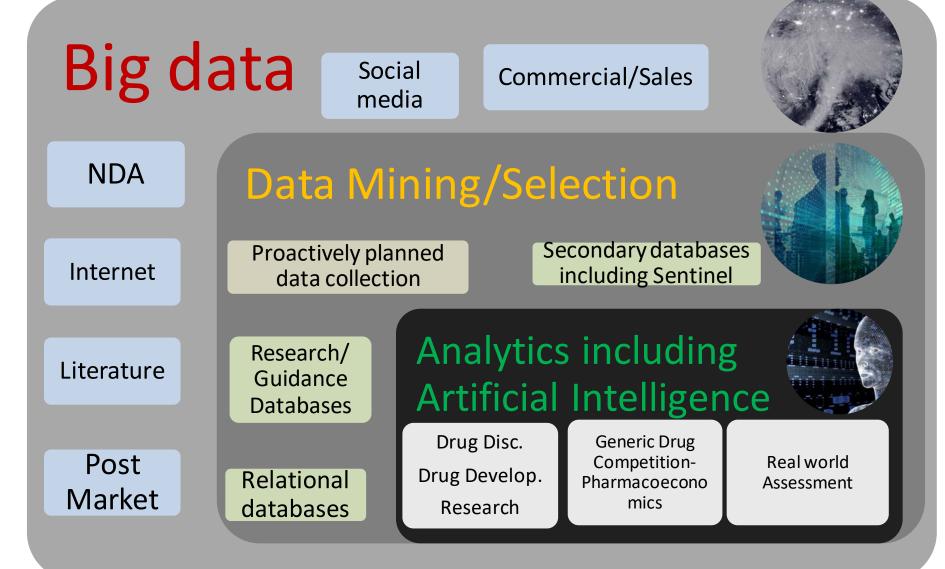
Consistent with DPA and BCPNN finding in general

Dermatitis acneiform as an example

DPA: Disproportionality Analysis; BCPNN: Bayesian Confidence Neural Network

Results KINASE: A Web App to Query the Results

e Inhibitory Network	Associated Sid	le Effects (KINASE)						
					-			
by Adverse Reaction	Please select	t an ontology for adverse re	eactions		Please select a standardized PT			
by Kinase		PT (preferred term)			hypertension			
	HLT (higher le							
e Reaction Ontology	SOC (System 0 CNO (Contemport SOC (System 0)							
Inhibitor Data		ized MedDRA Query)						
	To ask to ask	al energy and a second second device a second s						
	To select an onto	clogy category for adverse reactions						
	h	ypertension			6			
					of Kis that are potent	ially associated with the selected AR		
	UTI I					,,		
	<u>8</u>							
	Association t	between kinase inhibition a	and ARs					
	Association b Show 5 • en		and ARs			Search:		
			and ARs	Count	Expected count			
	Show 5 • en	tries		Count 255768.301130263	Expected count © 200918.133767855			
	Show 5 • en Kinase	tries Adverse reaction		0.00007a.*				
	Show 5 ren Kinase	tries Adverse reaction hypertension		255768.301130263	200918.133767855			
	Show 5 en Kinase FLT1 FLT4	tries Adverse reaction hypertension hypertension		255768.301130263 128519.207268873	200918.133767855 98487.1029497268			
	Show 5 en Kinase FLT1 FLT4 KIT	tries Adverse reaction hypertension hypertension hypertension		255768.301130263 128519.207268873 1219382.9182246	200918.133767855 98487.1029497268 940403.226488005	Search: False discovery rate (FDR)		
	Show 5 • en Kinase FLT1 FLT4 KIT PDGFRA	tries Adverse reaction Adverse reaction hypertension hypertension hypertension hypertension hypertension hypertension		255768.301130263 128519.207268873 1219382.9182246 697179.966188529	200918.133767855 98487.1029497268 940403.226488005 534696.591368969	False discovery rate (FDR)		


YouTube by Dr. Liu: <u>https://www.youtube.com/watch?v=O1kqbWFqhwc&t</u>

Summary for the Case

- Meta-analyses are based on Phase 3 data from 17 TKIs
- Analysis results for associations between kinases inhibitions and adverse reactions are consistent with research finding
- Caveat should be given before experimentally verifying other associations or claiming a causal relationship
- Novel methods including machine learning techniques can be used for analysis

Take Home Message: (Big) Data Driven Decisions Makings in the Agency

The World of Big Data

FDA

Acknowledgement

DOPI/OHOP/OND/CDER

- Geoffrey Kim, M.D.
- James Xu, M.D.
- Amy McKee, M.D.

ORS/OGD/CDER

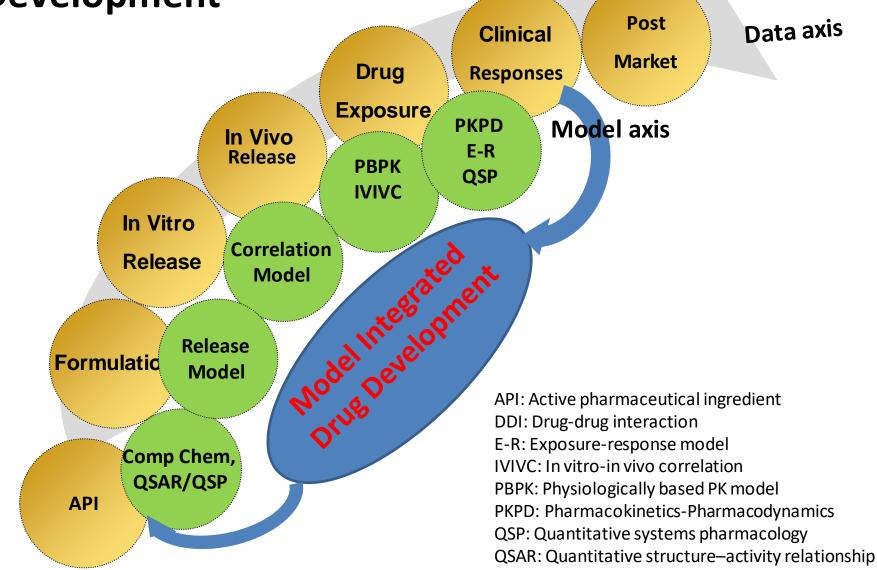
- Jinzhong Liu, Ph.D.
- Meng Hu, Ph.D.
- Xiajing Gong, Ph.D.

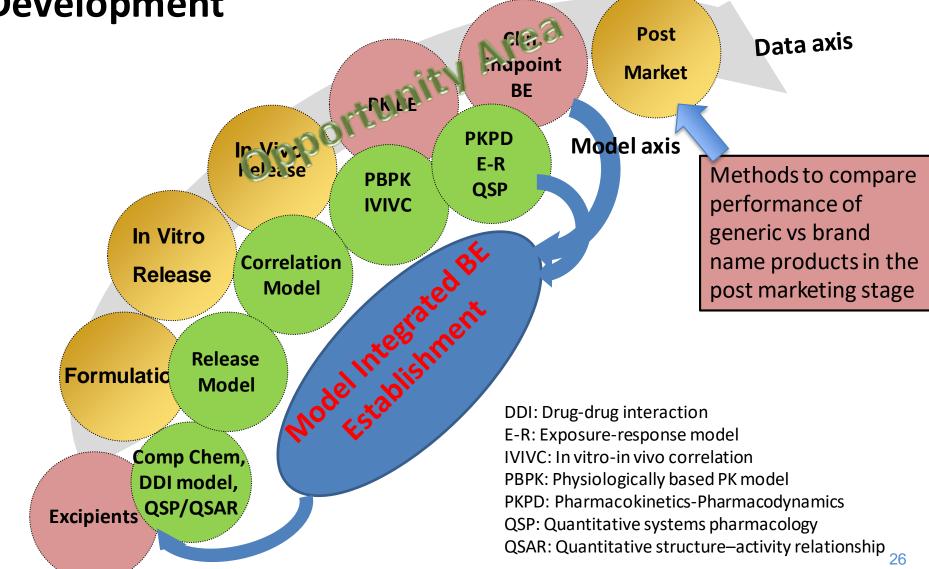
DHOT/OHOP/OND/CDER

• Todd Palmby, Ph.D.

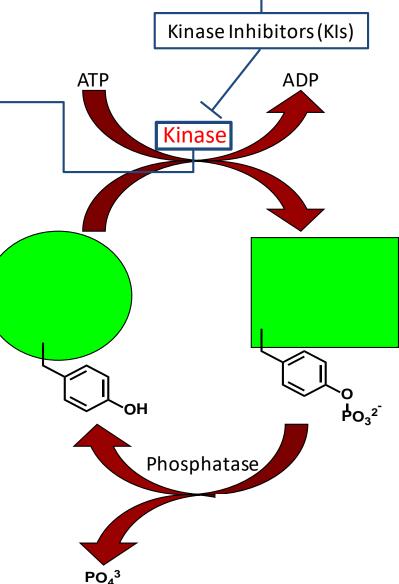
DHP/OHOP/OND/CDER

• Angelo DeClaro, M.D.


• Robert Lionberger, Ph.D.


Backups

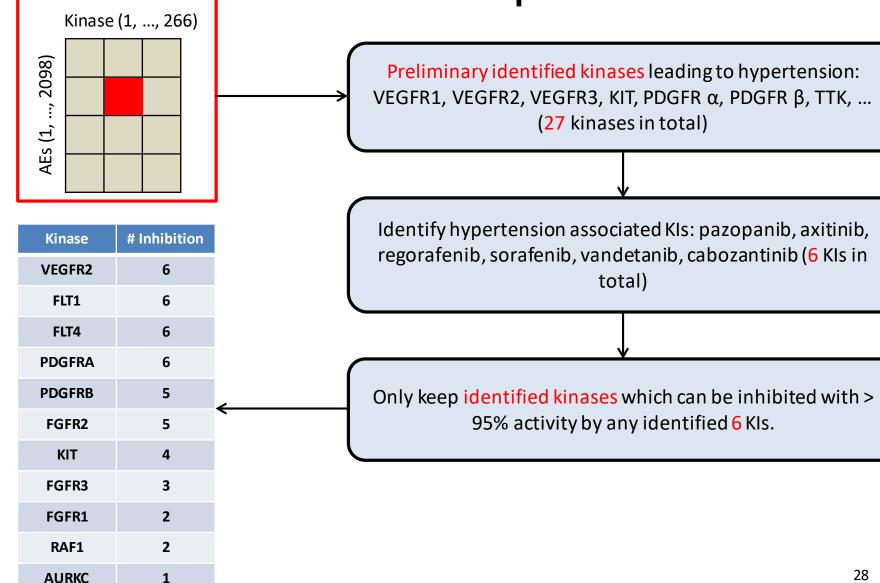
An Integrated Modeling System for New Drug Development


An Integrated Modeling System for Generic Drug

Background

Kinase Inhibitors

A kinase is a type of enzyme that transfers phosphate groups from highenergy donor molecules (such as ATP) to specific substrates, a process referred to as phosphorylation.



Kinase includes many oncogenes, so phosphorylation by kinases is a necessary step in some cancers.

Kinase inhibitors are used as drugs to treat these cancers by inhibiting kinases.

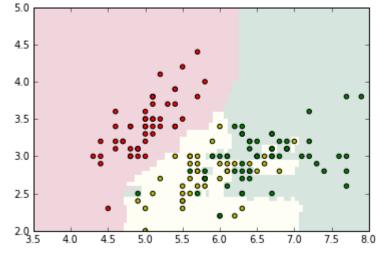
To identify kinases associated with hypertension

An Example

Machine Learning for Correlation Identification

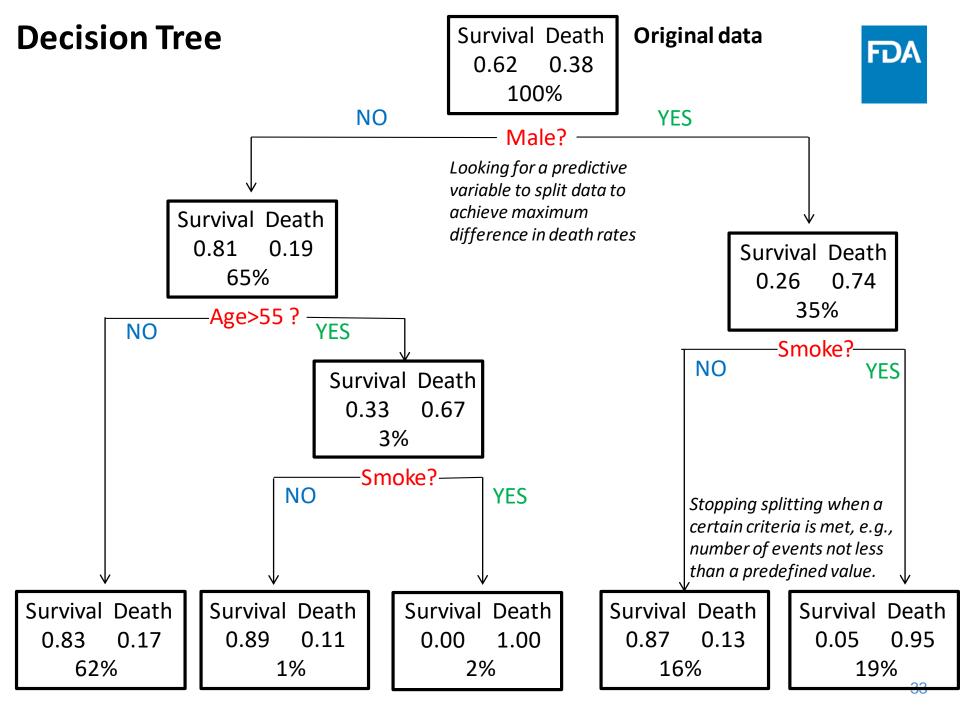
					()		
Subj#	Age	Gender	ΡΤ	AE_onset	K ₁	K ₂	•••	К _р
1	53	Μ	А	12	X1 ₁	X1 ₂		X1 _p
1	53	Μ	А	26	X1 ₁	X1 ₂		X1 _p
1	53	Μ	В	6	X1 ₁	X1 ₂		X1 _p
1	53	Μ	Z	130	X1 ₁	X1 ₂		X1 _p
2	48	F	В	3	X2 ₁	X2 ₂		X2 _p
2	48	F	В	78	X2 ₁	X2 ₂		X2 _p
Ν	59	F	Y	58	XN_1	XN_2		XN _p

The time factor is taken into account!


Traditional methods

- Regression-based
 - Proportional hazards model
 - Accelerated failure time model
 - Cox model (semi-parametric)
- Issues
 - Distribution assumption
 - Model is difficult to converge due to large number of predictive variables
 - Linear relationships

Machine learning


- Machine-learning-based
 - Artificial neural network
 - Random forest
 - Support vector machine
- Advantages
 - Less distribution assumption
 - Capable for large-feature problem
 - Nonlinear relationship
 - Able to describe the variable-variable interaction

Random survival forest

- Artificial neural network
 - Over-learning
 - Inconvenient to identify importance of variable
- Support vector machine
 - Inconvenient to identify importance of variable
- Random survival forest
 - Bagging (or boosting) technique to prevent from over learning
 - Established method to identify importance of variable
 - Variable importance
 - Minimal depth
 - Variable hunting

How to grow a decision tree

- How to split
 - Searching a predictive variable to maximize event (e.g., death rates) difference between daughter nodes

- How to stop
 - A certain criteria is met, e.g., number of events no less than a certain value

Why random forest?

- Decision tree is a 'greedy' algorithm.
 - For example, given coins with values of 1, 15, 25 cents, how to get 30 cents using less coins.
 - Greedy: 30=25+1+1+1+1
 - Optimal: 30=15+15
- Decision tree is prone to over-learning or over-fitting.
- Random forest consists of many decision trees, each of which grows by a part of data and predictive variables.

Relevant Research from Agencies

 GDUFA I supported the build out of the modeling and simulation tool chain for generic drugs