

Session I: Demonstrating Complex API Sameness

Deyi Zhang
Division of Therapeutic Performance
Office of Research and Standard
OGD/CDER/FDA

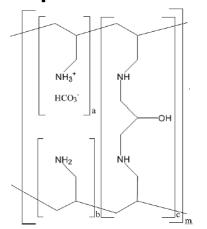
Oct 6th, 2017

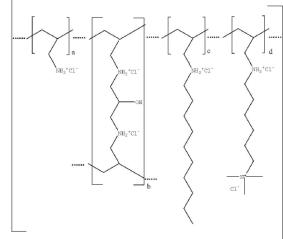
What Are Complex APIs

- Peptides
- Polymers
- Naturally-derived complex mixtures (including semi-synthetic mixtures)
- Other complex drug substances, such as ironcarbohydrate complexes, synthetic nucleotides

Peptides

- Important part of the US drug market (> 18 Billion \$\$ in 2016*) for the treatment of various diseases;
- Chemical synthesis of therapeutic peptides became a mature method with the advancement of SPPS technology;
- Development of new analytical technology makes characterizations of API and impurities possible;
- Evaluation of immunogenicity risk


Liraglutide: 3 billion \$\$ (2016*)


Glatiramer acetate: 4 billion \$\$ (2016*)

Polymers

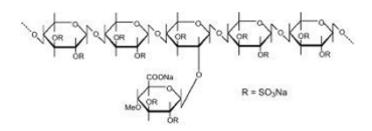
- Mostly local GI drugs as sequestrants:
 - Inorganic ions (Potassium; Phosphate, etc.)
 - Bile acids
- Insoluble, complex nature of API hinders the development of generic versions

Colesevelam hydrochloride (Welchol®)4


Naturally-derived Complex Mixtures

• From plants:

.OH B = H or OH,OH ÓН HO.



South American Tree Croton lechleri

Crofelemer for HIV-related diarrhea

Xylan from German Beechwood (Fagus sylvatica)

Naturally-derived Complex Mixtures

• From animals:

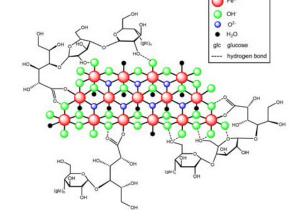
Pregnant mares' urine

Conjugated estrogens for postmenopausal symptoms

Porcine intestinal tissue

Naturally-derived Complex Mixtures

- Broad sources of material
- Heterogeneous: natural compositional variabilities exist in reference listed drugs
- Challenging characterizations:
 - New analytical methods
 - Big data analysis/model building



Other Complex Drug Substances

Metal-complexes:

Fe:

Ferric carboxymaltose for iron deficiency anemia

AI:

[AI(OH)₃] \times [H₂O]_y (x=8 to 10 and y= 22 to 31) R= SO₃AI(OH)₂ Sucralfate for duodenal ulcers

Demonstrating API Sameness

- Why: Critical part of the pharmaceutical equivalence:
 - Same active ingredient(s)
 - Same dosage form and route of administration
 - Identical in strength or concentration
- How: Explore and apply modern analytical and quantitative methods to characterize productspecific attributes to establish API sameness

OGD Supported Research Efforts

- External grants or contracts: To support analytical method development and application in complex API characterizations:
 - Pentosan polysulfate sodium (MIT*, Pacific Northwest Nat Lab*)
 - Crofelemer (Univ of Kansas*)
- Internal collaborations with FDA labs:
 - Component analysis of conjugated estrogens
 - Polymeric drug characterizations
 - Peptide impurity analysis and immunogenicity evaluations
 - Glatiramer acetate characterizations

Research Outcomes

- Developed and/or revised 12 product specific guidances (PSGs) on complex API drugs
- Directly contributed to 3 First Generic approvals
- Developed Guidance for Industry on allowing ANDA submission of certain synthetic peptides referencing RLDs of rDNA origin
- Advanced science through publications and/or presentations

Speakers

- Professor Ram Sasisekharan (MIT)
 - Comparative characterization of highly heterogeneous drugs

- Dr. Daniela Verthelyi (FDA Lab Chief)
 - Scientific considerations for the assessment of immunogenicity risk of generic synthetic peptide products