

IVPT Studies with Sunscreen Products: Experimental Parameters

Yang Yang, PhD, BPharm

Division of Product Quality Research, Office of Testing and Research Office of Pharmaceutical Quality, CDER, FDA <u>Yang.yang@fda.hhs.gov</u>

2021 IVRT and IVPT Methods Workshop: Best Practices and Scientific Considerations August 18-20, 2021

*This presentation reflects the views of the authors and should not be construed to represent FDA's views or policies.

A quality product of any kind consistently meets the expectations of the user.

Sunscreens are no different.

People expect safe and effective sunscreens.

Outline

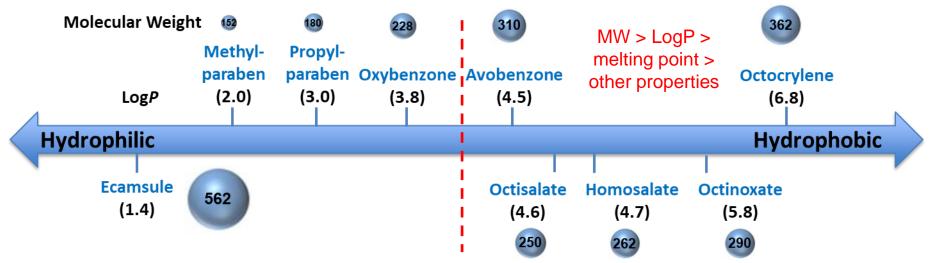
Introduction

- **UV filters in sunscreen**
- □ Analytical method considerations
- □ IVPT device considerations
- **Skin model and dosing methods**
- References
- □ Acknowledgements

FDA

Introduction

- Sunscreens are OTC topical drug products indicated for the prevention of sunburn and skin damage following UV exposure.
- Sunscreen active ingredients UV filters should act locally on the skin surface following dermal application.
- Absorption of UV filters may lead to safety and efficacy concern.
- IVPT method development to
 - 1) support sunscreen selection for maximal usage clinical trials (MUsT)
 - 2) support the evaluation of frequently reformulated sunscreens
 - 3) support the evaluation of generic vs. brand topical drug products


Active ingredients in commercial sunscreens

Product names in IVPT studies	UV Filters in Sunscreen Formulations	Product names in Clinical studies
Cream	Avobenzone 2%, Octocrylene 10%, Ecamsule 2%	Cream (Study I)
A-lotion	Avobenzone 3%, Octocrylene 6%, Oxybenzone 4%	Lotion (Study I & II)
B-lotion	Avobenzone 3%, Octocrylene 6%, Oxybenzone 4%	-
A-spray	Avobenzone 3%, Octocrylene 8%, Oxybenzone 6%	-
B-spray	Avobenzone 3%, Octocrylene 10%, Oxybenzone 5%	Spray-2 (Study I)
C-spray	Avobenzone 3%, Octocrylene 10%, Oxybenzone 6%, Homosalate 15%, Octisalate 5%	Spray-1 (Study II)
D-spray	Avobenzone 3%, Octocrylene 10%, Homosalate 10%, Octisalate 5%, Octinoxate 7.5%	Spray-2 (Study II)
D-oil spray	Avobenzone 3%, Homosalate 10%, Octisalate 5%, Octinoxate 7.5%	Spray-3 (Study II)

Physiochemical properties of UV filters affecting permeation

	Ecamsule	Oxybenzone	Avobenzone	Octisalate	Homosalate	Octinoxate	Octocrylene
LogP	1.4	3.8	4.5	4.6	4.7	5.8	6.8
Molecular Weight	562.7	228.2	310.4	250.3	262.3	290.4	361.5
Melting Point	255°C	62°C	83.5°C	<25°C	<20°C	-25°C	14°C
TPSA	160 Å ²	46.5 Å ²	43.4 Å ²	46.5 Å ²	46.5 Å ²	35.5 Å ²	50.1 Å ²
рКа	2.0	7.6	9.7	8.1	8.1	-4.8	-

LogP, octanol-water partition coefficient; TPSA, topological polar surface area in $Å^2$; pKa, acid dissociation constant at log scale.

www.fda.gov SCCS "Scientific Advice on US FDA questions regarding the safety assessment of UV filters in the EU." 2015. 6

FDA

Considerations in Analytical Methods

Detection limit should be satisfied:

 \rightarrow Aliquot sampling (500 µL) to ensure concentration of all active ingredients are above their LLOQ

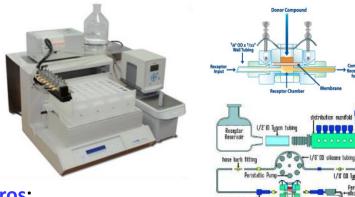
Avoid introducing errors during sample processing:

- \rightarrow BSA crash out (protein precipitation)
- \rightarrow Extraction of active ingredients
- \rightarrow Sample dilution or concentration
- ightarrow Sample stability during storage and analysis

(SciEx UHPLC - Qtrap 6500 MS/MS)

Wet Heat Devices for IVPT

Franz Diffusion System



Cons:

- Manual sampling is inconvenient at night

<u>PermeGear, Inc.</u>

Flow-Through Diffusion System

Pros:

- Auto-sampling
- Cell # 7
- Complete removal of receiver solution Cons:
- Larger receiver volume ightarrow too much dilution
- Long plastic tubing
- \rightarrow Temperature drop during solution transport

Dry Heat Devices for IVPT

Diffusion Master (Teledyne-Hanson)

Pros:

- Auto-sampling
- Low volume
- Heated resource block

Cons:

- Large plastic stirrers
- \rightarrow Non-specific binding
- \rightarrow Hard to remove bubbles

<u>Automated Diffusion System</u> (Logan Instruments)

Pros:

- Auto-sampling
- Air bubble removal (tilting) mechanism
- Maybe easier for complete receiver removal

Cons:

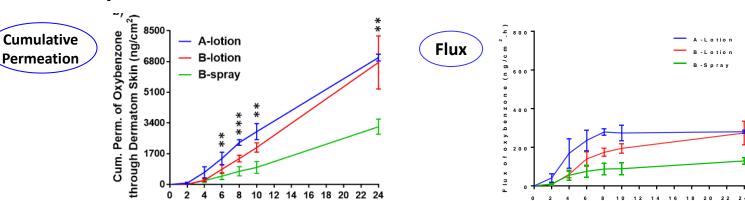
Long plastic tubing ightarrow Non-specific binding

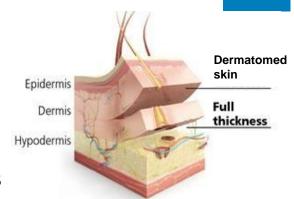
FDA

Selection of Skin Model and Dosing Method

Full thickness, partial thickness, dermatomed human skin

Pros:

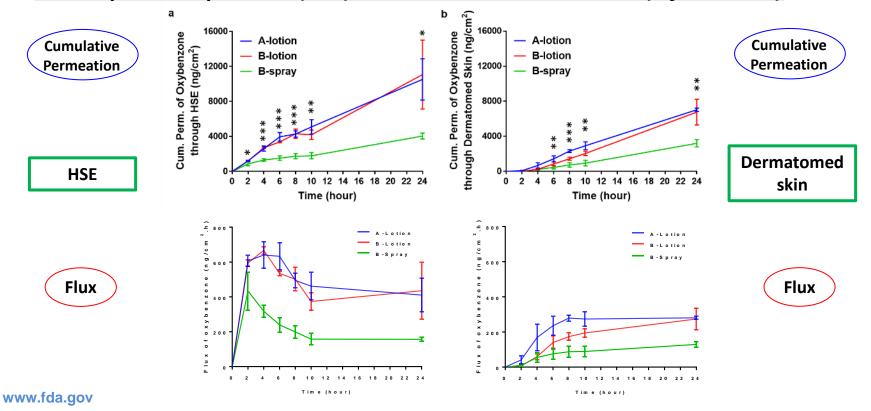

- Good for long term tests (e.g., 24 96 hours)
- Good for infinite and finite dosing

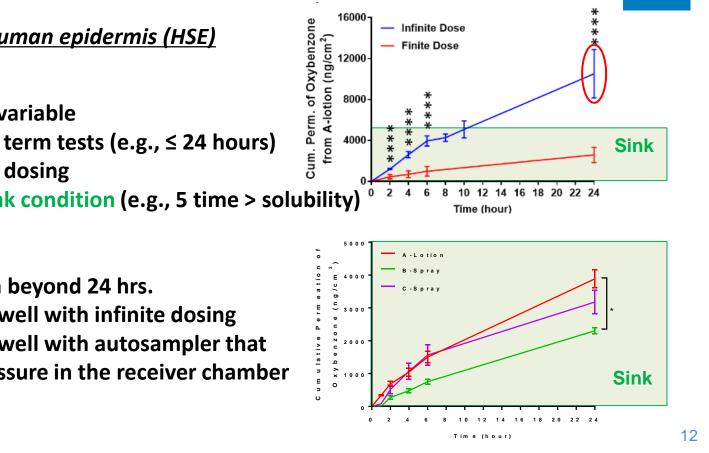

Cons:

- Manual collection → intra-donor variation in thickness

Time (hour)

- Dermal layer inter-donor variation \rightarrow data variation




Time (hour)

Selection of Skin Model and Dosing Method

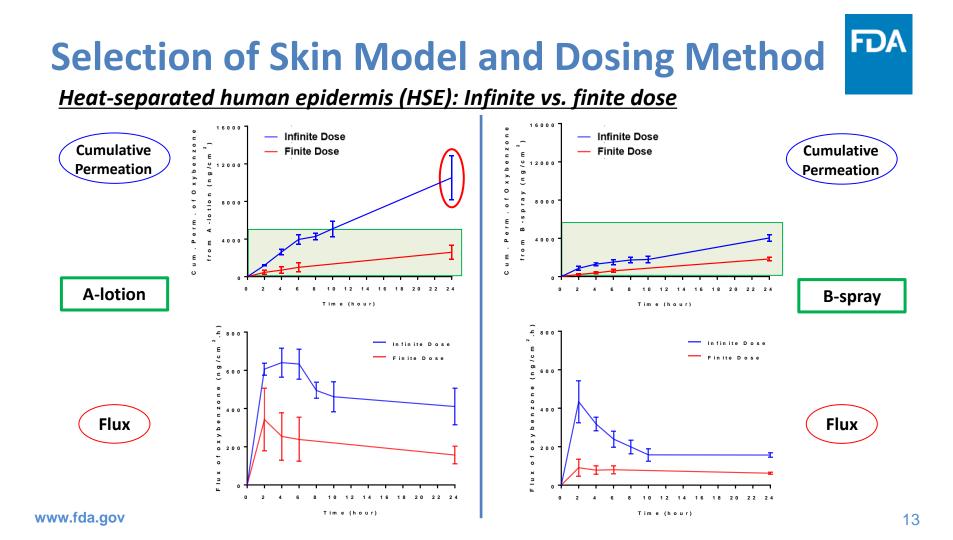
Heat-separated epidermis (HSE) vs. dermatomed human skin (Infinite dose)

FDA

Selection of Skin Model and Dosing Method

Heat-separated human epidermis (HSE)

Pros:


- Thickness less variable
- Good for short term tests (e.g., \leq 24 hours)
- Good for finite dosing
 - → maintain sink condition (e.g., 5 time > solubility)

Cons:

www.fda.gov

- Over hydration beyond 24 hrs.
- May not work well with infinite dosing
- May not work well with autosampler that introduces pressure in the receiver chamber

In vitro-in vivo rank order correlation

In vitro cumulative skin (HSE) permeation vs. clinical AUC at 24 hours:

Products	Permeation	AUC	Permeation	AUC	Permeation	AUC	Permeation	AUC
	Homosalate		Octisalate		Octinoxate		Oxybenzone	
A-lotion	-	-	-	-	-	-	1	1
C-spray	1	1	2	2	-	-	2	2
D-spray	2	2	1	1	1	1	-	-
D-oil spray	3	3	3	3	2	2	-	-

Products	Permeation	AUC	Permeation	AUC	
	Octocryle	ene	Avobenzone		
A-lotion	2	1	3	1	
C-spray	3	3	4	2	
D-spray	1	2	2	3	
D-oil spray	-	-	1	4	

Not all UV filters demonstrated good correlation → IVPT method may need further optimization

- A fit-for-purpose IVPT method needs fine tuning of IVPT parameters.
- Both dermatomed cadaver skin and HSE may be employed in sunscreen IVPT studies to select products for MUsT studies.
- Rank order results of cumulative *in vitro* skin permeation may be correlated with the clinical AUC.
- Skin permeation of UV filters is influenced by their physicochemical properties. Absorption of UV filters also depends on the properties of sunscreen formulation. IVPT method may be extremely useful for comparing reformulated sunscreens against sunscreens with clinically proven safety.

References

- 1. Federal Register. Sunscreen Drug Products for Over-the-Counter Human Use Proposed Rule. 2019
- 2. FDA. Guidance for Industry: Maximal Usage Trials for Topical Active Ingredients Being Considered for Inclusion in an Over-The-Counter Monograph: Study Elements and Considerations. 2019
- 3. FDA. Guidance for Industry: Nonprescription Sunscreen Drug Products Safety and Effectiveness Data. 2016
- 4. Matta MK, Florian J, Zusterzeel R, et al. Effect of Sunscreen Application on Plasma Concentration of Sunscreen Active Ingredients: A Randomized Clinical Trial. *JAMA*. 2020;323(3):256-267.
- 5. Matta MK, Zusterzeel R, Pilli NR, et al. Effect of Sunscreen Application Under Maximal Use Conditions on Plasma Concentration of Sunscreen Active Ingredients: A Randomized Clinical Trial. JAMA. 2019;321(21):2082-2091.
- 6. Yang Y, Ako-Adounvo A-M, Wang J, et al. In Vitro Testing of Sunscreens for Dermal Absorption: A Platform for Product Selection for Maximal Usage Clinical Trials. *Journal of Investigative Dermatology*. 2020;140:2487-95.

Acknowledgements

□ FDA OND intramural funding support

D Participants:

FDA

OPQ/OTR Research Team:	CDER Collaborators/Consultants:		
Ann-Marie Ako-Adounvo	Theresa Michele	Sam Raney	
Jiang Wang	Steven Adah	Priyanka Ghosh	
Daniel Willett	Sergio Coelho	E. Dennis Bashaw	
Huzeyfe Yilmaz	Jian Wang	Eleftheria Tsakalozou	
Muhammad Ashraf	David Strauss	Da Zhang	
Patrick Faustino	Murali Matta	Luke Oh	
Thomas O'Connor	Larry Lee	Soo Hyeon Shin	
CDER Sunscreen Working Group	2021 IVRT/IVPT Workshop Planning Committee		

