

Regulatory and Scientific Considerations on Characterizations of Complex Polymeric Excipients

Yan Wang, Ph.D. Division of Therapeutic Performance Office of Research and Standards OGD | CDER | U.S. FDA

Biography and Contact Information

- Training background
 - Pharmaceutical Sciences
- Current role
 - Acting team lead for Complex Drug Substances & Formulation Team in the Division of Therapeutic Performance (DTP), Office of Research and Standards (ORS), Office of Generic Drugs (OGD), CDER, U.S. FDA.
- Research expertise
 - Characterization of complex polymeric excipients
 - Complex parenteral, ophthalmic, otic, intravaginal, and intrauterine formulations
- Contact information: <u>yan.wang3@fda.hhs.gov</u>

Disclaimer

This presentation reflects the views of the author and should not be construed to represent FDA's views or policies

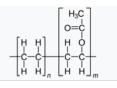
Regulatory Requirements for Excipients in Parentera Drug Products

• Demonstration of qualitative (Q1) and quantitative (Q2) sameness of excipients prior to conduct of bioequivalence (BE) studies of parenteral drug products

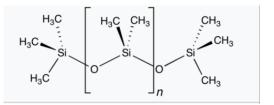
21 CFR 314.94 (a)(9)(iii) – Inactive ingredient changes permitted in drug products intended for parenteral use.

Generally, a drug product intended for parenteral use shall contain **the same inactive ingredients** (qualitatively the same – "Q1") and **in the same concentration** (quantitatively the same – "Q2") as the reference listed drug.

An applicant may seek approval of a drug product that differs from the reference listed drug in **preservative**, **buffer**, **or antioxidant** provided that the applicant identifies and characterizes the differences and provides information demonstrating that the differences do not affect the safety or efficacy of the proposed drug product.


A formulation which contains an excipient not contained in the RLD and not considered to be an "exception excipient" cannot be submitted as an ANDA.

Challenges of Demonstrating Sameness Of Complex Excipients

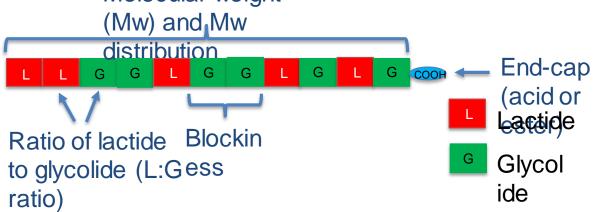

- Common Challenges:
 - Complexity in structure and composition
 - Non-compendial excipient
 - May be difficult to purify or analyze
 - Excipient in finished drug product may not be the same as starting raw material

Examples of Complex Polymeric Excipients

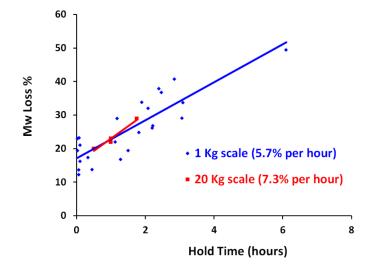
- > Poly esters
 - Poly(D,L-lactic and glycolic acid) (PLGA) copolymers
 - Poly(D,L-lactic acid) (PLA) copolymers
- Poly (ethylene-vinyl acetate) (EVA)

Polydimethylsiloxane (PDMS)

PLGA Copolymers


- PLGAs are biodegradable random copolymers.
- PLGA polymers have been used in ~20 long acting injectable products as the rate controlling excipient
 - Dosage form: microspheres, in situ forming gels, solid implants
- Biodegradation depends on multiple factors:
 - e.g., Polymer properties, manufacture method, exposure to water

Characteristics of PLGA polymers


> Some key physicochemical properties of PLA/PLGA include:

- Polymer composition (L to G ratio)
- Molecular weight and weight distribution
- Polymer architecture (linear vs star-shaped)
- o Intrinsic viscosity
- o Glass transition temperature
- Polymer end-cap
- Crystallinity
 Molecular weight

Characteristics of PLGA polymers

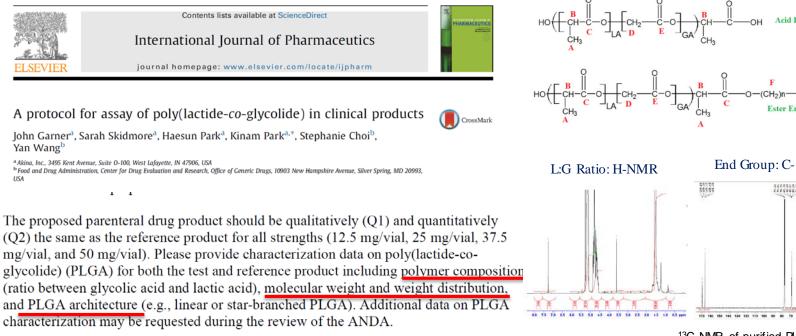
The key physicochemical properties of PLA/PLGA could be altered during manufacturing process.

PLGA degradation during manufacturing of risperidone-PLGA microsphere

Alkermes, US 6,264,987 B1,2001

FD/

Establishment of Q1/Q2 of PLGA Polymers


- The key physicochemical properties that are necessary for evaluation of Q1 sameness is on a <u>case-by-case basis</u>.
- The Q1/Q2 sameness of PLA/PLGA between the test and reference listed drug should be determined using the FINISHED formulation rather than the raw materials.

GDUFA Research Program on Long-Acting Drugs

- Improved understanding on characteristics of PLGA polymers
- Development of analytical tools for structural characterization for star-shaped polyesters used for drug delivery
- Advanced analytical techniques for separating PLGA polymers when used in the same formulation

Methods of Characterizations

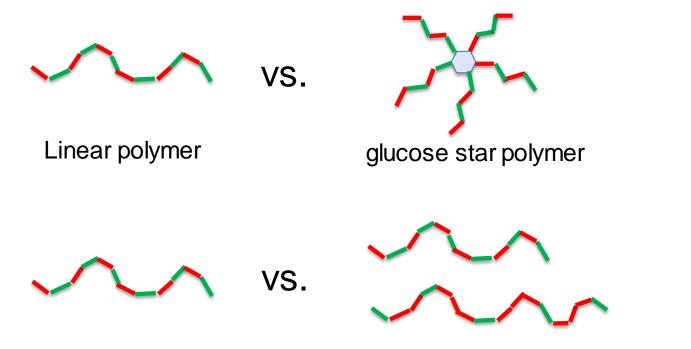
¹³C NMR of purified PLGA from Trelstar formulation

Acid Endcap

Ester Endcap

R

A protocol for assay of poly(lactide-co-glycolide) in clinical products. J. Garner, S. Skidmore, H. Park, K. Park. S. Choi, & Y. Wang International Journal of Pharmaceutics 495 (2015) 87-92

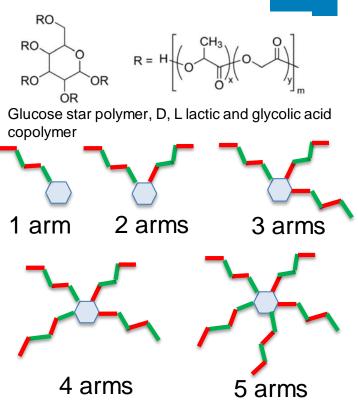

Present of methyl

indicates ester end-

unit at 14 ppm

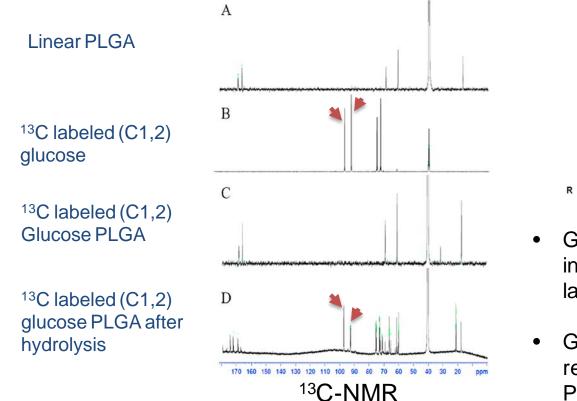
cap

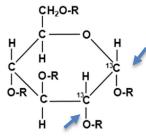
More Complicated Scenarios


Single polymer

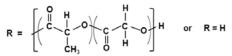
mixed polymers (e.g., different Mw, L:G ratio)

FDA


Glucose Star PLGA Polymer


- Five sites for esterification in glucose can lead to variations in branch formation
- Molecular weight measured by GPC does not provide information on branch frequency (# of arm per molecule)

FDA


Confirmation of Presence of Glucose Core

FDA

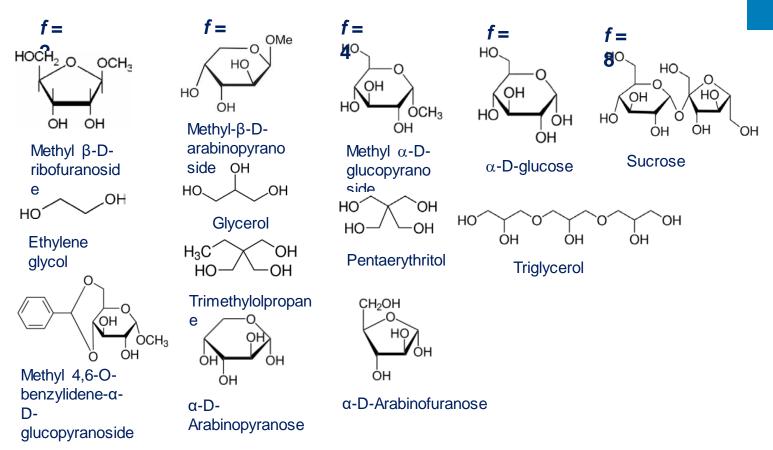
¹³C labeled (C1,2) glucose PLGA

- Glucose peaks were not observed in the 13C NMR Spectra of ¹³C labeled Glu-PLGA
- Glucose peaks (97 and 92 ppm) reappeared after hydrolysis of Glu-PLGA

Conformation Of Presence Of Glucose Core

Enzymatic Glucose assay

Blank Glu-PLGA from Sandostatin LAR


Hadar et al, 2019 CRS meeting, Poster

GPC with Quadruple Detectors

1. Refractive index	This establishes the exact concentration of the polymer.
2. Multiangle static light scattering (MASLS)	The component measures the absolute weight average molecular weight (M_w) without any calibration using standard molecules, as well as the radius of gyration (R_g) .
3. Dynamic light scattering	This yields hydrodynamic volume (V_h) , and thus hydrodynamic radius (R_h) .
4. Viscometer	The viscometer provides intrinsic viscosity ([η]) values
	In addition to GPD-4D
5. Osmometer	This measures the absolute number average molecular weight (M_w) .

In-house Branched PLGA Polymers

FDA

Characterization of Branched PLGA Polymers

FDA

Journal of Controlled Release 304 (2019) 75-89

Characterization of branched poly(lactide-*co*-glycolide) polymers used in injectable, long-acting formulations

Justin Hadar^a, Sarah Skidmore^a, John Garner^a, Haesun Park^a, Kinam Park^{a,b,*}, Yan Wang^c, Bin Qin^c, Xiaohui Jiang^c

^a Akina, Inc., 3495 Kent Avenue, Suite A200, West Lafayette, IN 47906, USA

^b Biomedical Engineering and Pharmaceutics, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, IN 47907, USA

^c Food and Drug Administration, Center for Drug Evaluation and Research, Office of Generic Drugs, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA

Characteristics of In-house Standards

FDA	

Initiator used for branch standards	Expected # of arms per molecule
Trimethylolpropane H ₃ C OH HOOH	3
Pentaerythritol HO OH HO OH	4
Adonitol HO HO OH OH	5
Dipentaerythritol HO OH HO OH	6

Table 3

Comparison Osmometer data to GPC-4D for indicated polymers.

Polymer	<i>M</i> _w (GPC-4D)	<i>M_n</i> (GPC-4D)	Osmometer M_n ($n = 4$)
3-Arm PLGA (AP229) 4-Arm PLGA (AP227) 6-Arm PLGA (AP228) Glu-PLGA (Corbion) Glu-PLGA (Evonik) Glu-PLGA (Sandostatin LAR)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{r} 39,464 \ \pm \ 3129 \\ 43,513 \ \pm \ 1174 \\ 51,879 \ \pm \ 5569 \\ 42,440 \ \pm \ 2093 \\ 43,339 \ \pm \ 2195 \\ 39,306 \ \pm \ 6071 \end{array}$

Hadar et al., JCR, 2019

Branch Analysis Of In-house Branch Standards Using GPC-4D

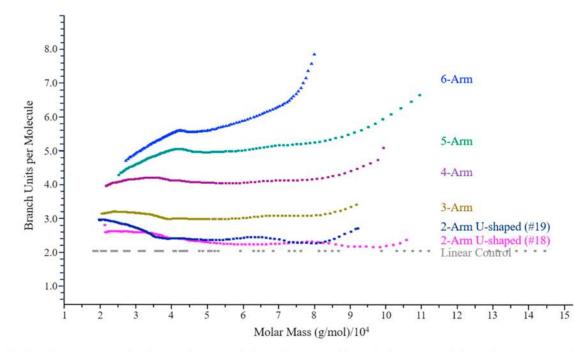
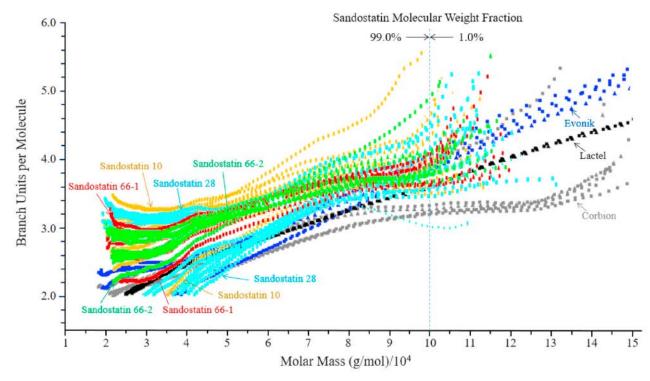



Fig. 5. The branch units per molecule as a function of the molar mass of branched PLGAs with branch units ranging from 2 to 6.

Branch Analysis of Sandostatin LAR Polymer and Commercial Available Star Polymers

Hadar et al., JCR, 2019

Theoretical Model Used For Branch Analysis

(1)

(2)

(3)

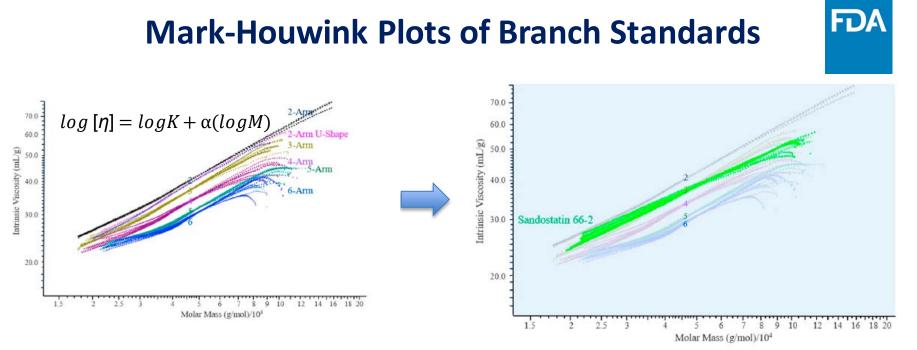
(4)

$$g = \left(\frac{R_{branched}^2}{R_{linear}^2}\right)_M$$

$$g' = \left(\frac{[\eta]_{branched}}{[\eta]_{linear}}\right)_M$$

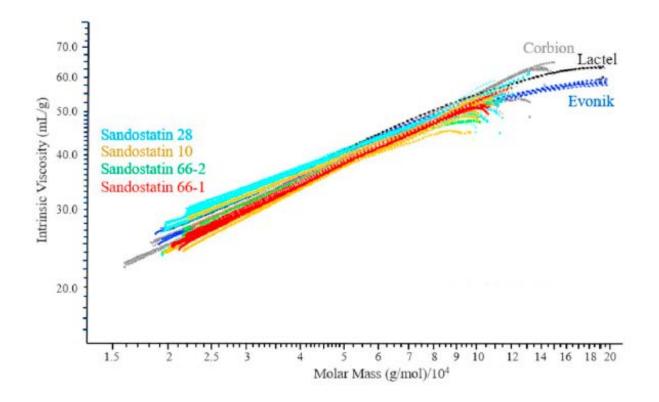
$$g' = g^e$$

$$g = \frac{6B}{B^2 + 3B + 2}$$


g: branch ratio

 R^2 mean square radius of branched and linear polymers having the same molar mass (*M*)

[η]: intrinsic viscosity of linear and branched polymers, having the same molar mass.


e: drainage factor

B: branch units per molecule

- [η] Intrinsic viscosity *M* Molecular weight
- With results of branch standards, the branch units of Glucose star polymer can be determined without theoretical model from the Mark-Houwink plots.

Mark-Houwink Plots of Glucose Star Polymers

Hadar *et al.*, JCR, 2019 ²⁵

FDA

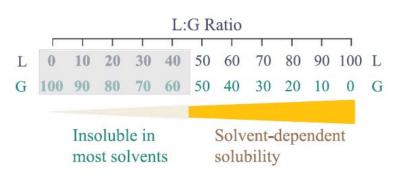
FDA

Trelstar[®] (Triptorelin Pamoate Injectable Suspension)

The TRELSTAR products are sterile, lyophilized biodegradable microgranule formulations supplied as single dose vials. Refer to Table 5 for the composition of each TRELSTAR product.

Table 5. TRELSTAR Composition	1 Month	3 Months	6 Months
Ingredients	TRELSTAR 3.75 mg	TRELSTAR 11.25 mg	TRELSTAR 22.5 mg
triptorelin pamoate (base units)	3.75 mg 2.7%	11.25 mg 8.7%	22.5 mg 11.0%
poly- <i>d,I</i> -lactide-co-glycolide	136 mg	118 mg	182 mg
mannitol, USP	69 mg	76 mg	68 mg
carboxymethylcellulose sodium, USP	24 mg	27 mg	24 mg
polysorbate 80, NF	1.6 mg	1.8 mg	1.6 mg

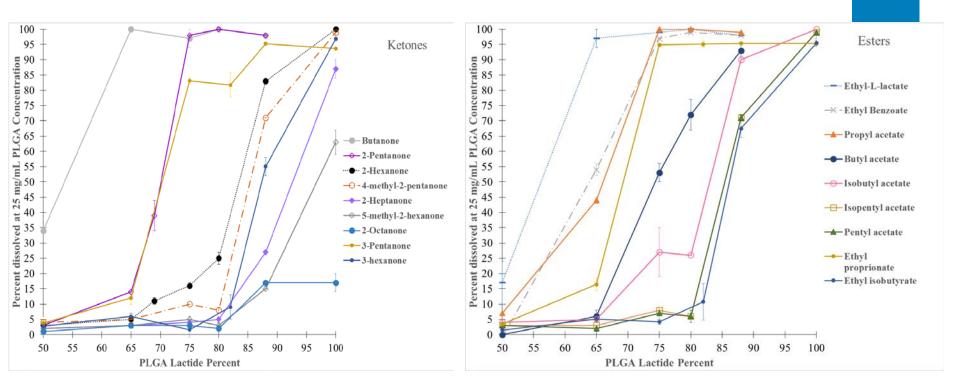
Molecular Weight: GPC. (Polystyrene standards)


L:G Ratio: H-NMR

End Group: C-NMR

Sample	M _n (Da)	M _w (Da)	L:G	Endcap
			(mol:mol)	
Trelstar [®] 3.75 mg	25,192	85,207	52:48	Ester
Trelstar [®] 11.25 mg	47,214	72,286	74:26	Acid
Trelstar [®] 22.50 mg	46,368	74,042	77:23	N/A

• Considering how PLGA properties generally control drug release, further investigation was needed to better understand the observation.


Mixtures of PLGA Polymers

JCR, 2019, 304: 125-134

- A drug product may contain more than one PLGA polymers for sustained release of drug.
 - PLGAs of different L:G ratio have different solubility in solvents.
 - It is possible to separate PLGAs based on this property even if their molecular weight is the same.

PLGA Dissolution by L:G Ratio

Garner et al. CRS Annual meeting poster, 2019

FDA

Separation and Analysis of PLGA in Trelstar

 Trelstar® separated 	-	•		iccessfully	
Table 1. Trel	star [®] Fractio	on Separation /	Analysis (Avera	age ± STDEV, N	=2 lots)
Solvent (fraction)	Percent polymer (w/w%)	Lactide content (%L, NMR)	Mw (GPC-4D)	Mn (GPC-4D)	Rc (NMR)
Original Mixture	100%	76.9 ± 0.1 (Average)	41,377 ± 135	31,475 ± 81	0.78 ± 0.01
Xylenes	6.0 ± 0.1	84.0 ± 0.1	13,063 ± 2695	8755 ± 4799	0.46 ± 0.16
Isopentyl acetate	15.8 ± 0.8	82.8 ± 0.1	24/153 ± 1316	19,429 ± 811	0 48 ± 0.08
Toluene	25.5 ± 1.3	82.9 ± 0.1	47,790 ± 9 39	39,084± 2588	0.55 ± 0.12
Butyl acetate	12.6 ± 0.2	74 <u>2±0.2</u>	26,592 ± 665	22,760 ± 99	0.81 ± 0.02
2-Pentanone	14.7 ± 0.2	72.5 ± 0.2	35,483 ± 264	29,658 ± 88	0.88 ± 0.001
Butanone	24.7 ± 0.7	70.8 ± 0.2	52,930 ± 640	45,267 ± 1467	0.89 ± 0.01
Butanone residual	0.6 ± 0.4	70.5 ± 0.6	NT*	NT*	NT*

* NT = Not Tested, too little quantity extracted to test.

- The data on the PLGA extracted from the formulation without any further treatment
- Fraction 1 with L:G above 80:20
- Fraction 2 with L:G in the range of 70:30 75:25
- Good mass recovery
- The results demonstrate that it is feasible to separate PLGA mixtures by dissolution of PLGA with different L:G ratio using various semi-solvents.
- More studies are needed to better understand the impact of MW/weight distribution on solubility of PLGA polymers

Garner et al. CRS Annual meeting poster, 2019

Summary

- Generic parenteral products need to contain the same excipients in the same concentration as the reference listed drugs
- Understanding of characteristics of complex polymeric excipients is critical for successful new and generic drug product development
- Characteristics of PLGA polymers are complex
- GPC-4D is a promising tool for structural characterization of branched PLGA polymer
- It is possible to separate mixtures of PLGA polymers based on L:G ratio

