

Long Acting Injectable and Implantable Drug Product Development: Regulatory Challenges and Considerations

Yan Wang, Ph.D. Science Reviewer OGD/ORS

GSK-CRS Long-Acting Injectables and Implantables Conference April 19, 2017 Philadelphia, PA, USA

Disclaimer

This presentation reflects the views of the author and should not be construed to represent FDA's views or policies

Outline

- Introduction
- Challenges in development and evaluation of long acting injectable/implantable (LAI) drug products
- FDA's GDUFA regulatory science program to support development of generic LAI drug products
- Summary

Long acting injectable/implantable formulations

- Oil-based injectable solutions
- Injectable-drug suspensions
- Polymer and lipid based LAIs

Oil-based injectable solutions

Drug	Brand name	Admin route	Dosing freq.	Indication	Company	Vehicle
Haloperidol decanoate	Haloperidol decanoate	IM	Once a month	Schizophren ia	Ortho-McNeil Pharm	Sesame oil
Estradiol valerate	Delestrogen	IM	Every 4 weeks	Hormone therapy	Monarch Pharm	Sesame oil
Fluphenazine decanoate	Modecate	IM	Every 2-5 weeks	Schizophren ia	Sanofi-Aventis	Sesame oil
Zuclopenthixol decanoate	Clopixol Depot	IM	Every 2-4 weeks	Schizophren ia	Lundbeck	Sesame oil
Testosterone enanthate	Delatestryl	IM	Every 2-4 weeks	Hormone therapy	Endo Pharma	Sesame oil

Lipophilic drug dissolved in vegetable oil

Long acting injectable suspensions

Drug	Brand name	Admin route	Dosing freq.	Indication	Company	Vehicle
Paliperidone palmitate	Invega Sustenna	IM	Once a month	Schizophrenia	Janssen	WFI PS-20 PEG4000
Olanzapine	Zyprexa Relprevv	IM	Every 2-4 weeks	Schizophrenia	Eli Lilly	WFI PS-80
Medroxyprogest erone acetate	Depo provera	IM	Every 3 months	Hormone therapy	Pfizer	WFI PS-80, PEG3350

Drugs with low solubility suspended in aqueous media

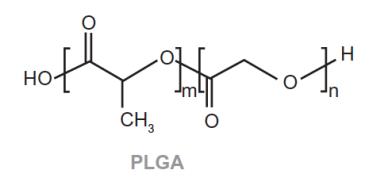
Polymer and lipid-based LAR products

Drug	Brand name	Drug category	Admin route	Dosing freq.	Indication	Company
Resperidone	Risperdal Consta	Small molecule	IM	2 weeks	Schizophrenia	Janssen Alkermes
Octreotide	Sandostatin LAR depot	Octapeptide	IM	1 month	Acromegaly	Norvatis
Goserelin	Zoladex	Decapeptide	IM	1, 3 months	Prostate cancer	AstraZeneca
Leuprolide	Lupron Depot	Nonapeptide	IM	1, 3, 4, 6 months	Prostate cancer	Takeda/Abbott
Triptorelin	Decapeptyl/ Telstar/ Pamoerlin	Decapeptide	IM	1, 3, 6 months	Prostate cancer	lspen/Watson/Re ddy/Debiopharm
Exenatide	Bydureon	39-amino acid peptide	SC	1 week	Type 2 diabetes	Amylin/BMS/ Alkermes
Cytarabine	DepoCyt	Small molecule	Intrathec al	14 or 28 days	Lymphomatous meningitis	Pacira
Bupivacaine	Exparel	Small molecule	Direct to surgical site	Single dose, 3 days	Postsurgical analgesia	Pacira

Challenges in LAR product development

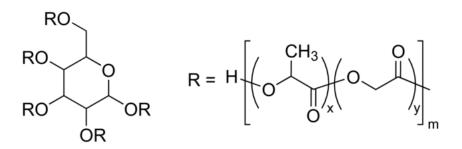
- Complex formulation and excipients
- Small process and raw material changes could result in significant product changes
- Complicated characterizations
- Release mechanisms (especially in vivo) are not fully understood
- No standard *in vitro* drug release assay
- Few models correlating *in vitro* drug release with *in vivo* pharmacokinetics
- Challenges in scale up
- •

PLA/PLGA based LAI drug products



Drug Product (Active Ingredient)	Dosage Form	Route of	Indication(s)
		Administration	
Ozurdex (Dexamethasone)	Implant	Intravitreal	macular edema, non-infectious uveitis,
			and diabetic macular edema
Zoladex (Goserelin acetate)	Implant	Subcutaneous	Prostate cancer
Atridox (Doxycycline hyclate)	In situ forming gel	Periodontal	periodontitis
Eligard (Leuprolide acetate)	In situ forming gel	Subcutaneous	advanced prostate cancer
Lupron (Leuprolide acetate)	Microsphere	Intramuscular	endometriosis
Lupron Depot (Leuprolide acetate)	Microsphere	Intramuscular	advanced prostatic cancer
Lupron Depot-PED (Leuprolide	Microsphere	Intramuscular	central precocious puberty
acetate)			
Trelstar (Triptorelin pamoate)	Microsphere	Intramuscular	advanced prostate cancer
Risperdal Consta (Risperidone)	Microsphere	Intramuscular	schizophrenia and bipolar I disorder
Signifor LAR (Pasireotide pamoate)	Microsphere	Intramuscular	acromegaly
Vivitrol (Naltrexone)	Microsphere	Intramuscular	alcohol dependence
Arestin (Minocycline HCl)	Microsphere	Periodontal	periodontitis
Bydureon (Exenatide)	Microsphere	Subcutaneous	type 2 diabetes
Sandostatin LAR (Octreotide)	Microsphere	Subcutaneous	acromegaly
Signifor (Pasireotide)	Microsphere	Subcutaneous	cushing's disease

Complex excipients


• Poly(lactic-co-glycolic acid) (PLGA) copolymer

m = number of units of lactic acid n = number of units of glycolic acid

- Ratio of lactic acid to glycolic acid
- Molecular weight/weight distribution

Glucose star polymer, D,L-lactic and glycolic acids copolymer

Sandostatin LAR depot (octreotide acetate microsphere)

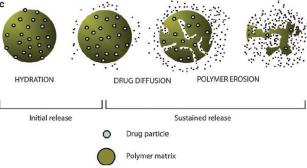
Critical PLGA physicochemical properties

- > Polymer composition (L to G ratio)
- Molecular weight and weight distribution
- Polymer architecture (linear vs star-shaped)
- Glass transition temperature
- Polymer end-cap
- Crystallinity

Generic parenteral PLGA microsphere drug products should be Q1/Q2 equivalent to Reference Listed Drug (RLD).

www.fda.gov Q1: same excipient

Q2: same amount


Complex drug release

Multiple factors impact drug release

Polymer composition; polymer molecular weight; API chemical property; manufacture process; matrix size and shape; drug loading; pH; releasing media.....

- Complex drug release mechanisms
 - Multi-phasic release profiles

- No compendial in vitro drug release testing method
 - Unlike oral formulations, no standardized test procedures (e.g., USP methods) for parenteral microsphere products.
 - The process of establishing release method and acceptance criteria is complicated.
- Challenging to correlate in vitro drug release with in vivo pharmacokinetics
 www.fda.gov
 12

GDUFA research

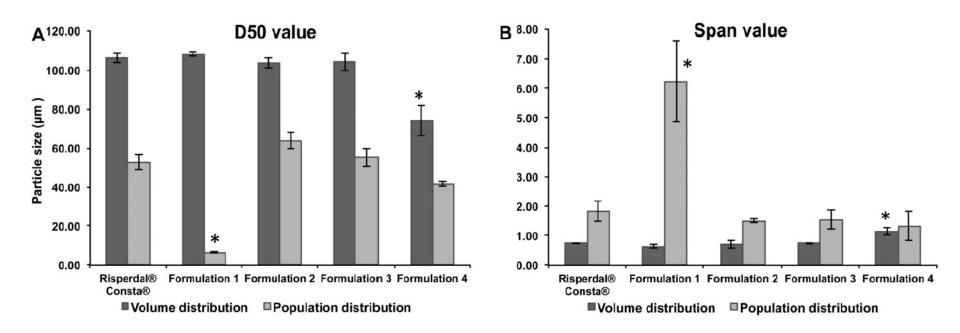
Since 2013, FDA/OGD has funded **9** grants/contracts for development and characterization of PLA/PLGA-based generic drug products:

- Characterizations of PLGA polymers and PLGA based microspheres and implants
- IVIVC
- Modeling and simulation

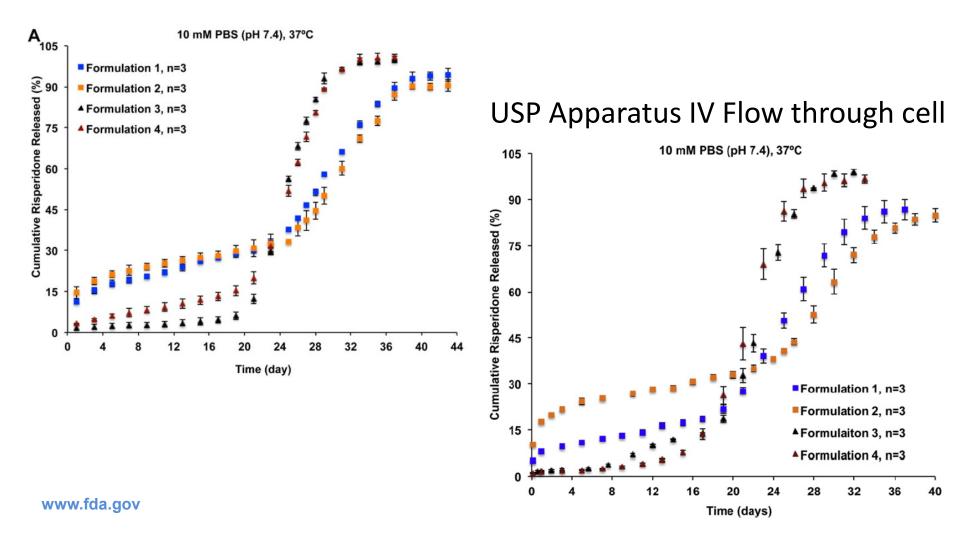
IVIVC of risperidone microspheres

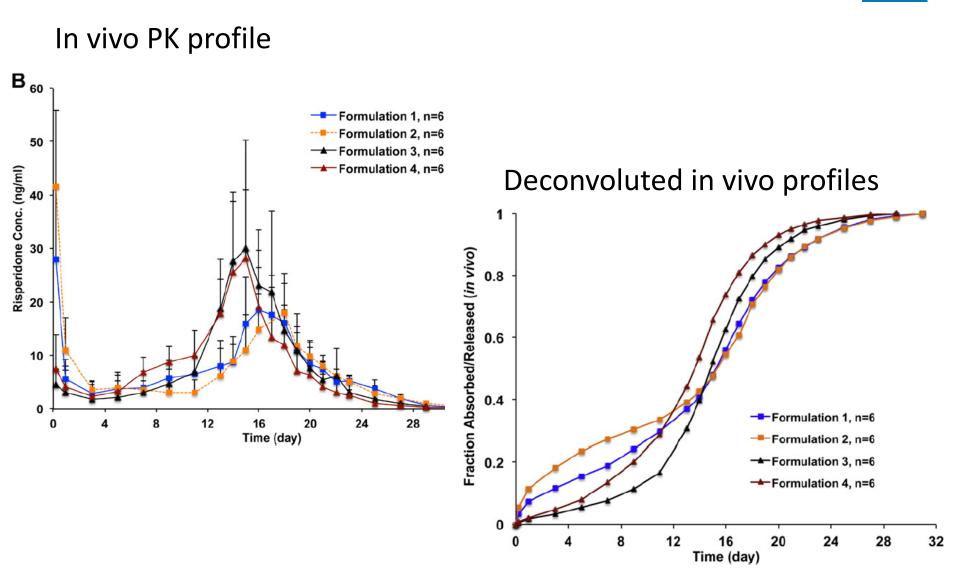
- Q1/Q2 formulations:
 - Similar PLGA as that used in Risperdal[®] Consta[®]
 - Different manufacturing processes (homogenization, vortex mixing, solvents) resulted in different physicochemical properties (porosity, particle size)
- Two release methods investigated:
 - USP Apparatus II (Sample-and separate)
 - USP Apparatus IV
- Level A IVIVCs established in rabbits based on USP Apparatus IV data

Shen J, et al. J Control Release. 2015 Nov 28;218:2-12 Shen J, et al. Int J Pharm. 2016 Feb 10;498(1-2):274-82

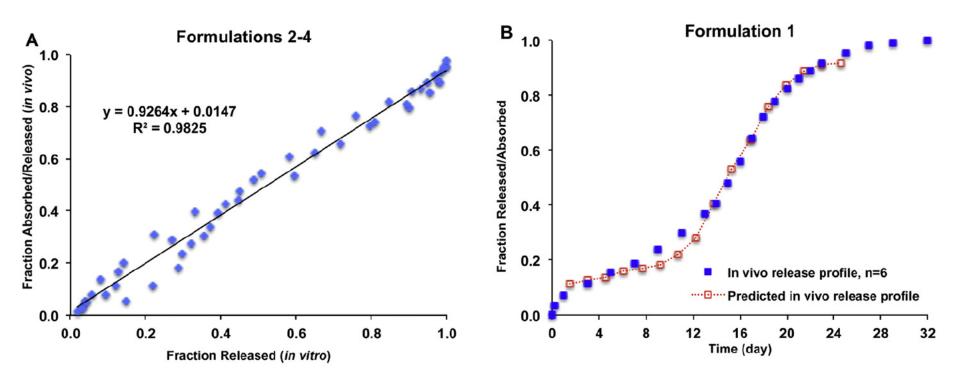


Sample	Solvent	Preparation method	Porosity (%)
Risperdal Consta			43.97 ± 4.60
F1	DCM	Homogenization & dry sieving	43.19 ± 4.60
F2	DCM	Homogenization & wet sieving	46.04 ± 42.90
F3	EA	Vortex & wet sieving	54.98 ± 1.25
F4	EA	Homogenization & wet sieving	61.75 ± 1.08


Particle size distribution

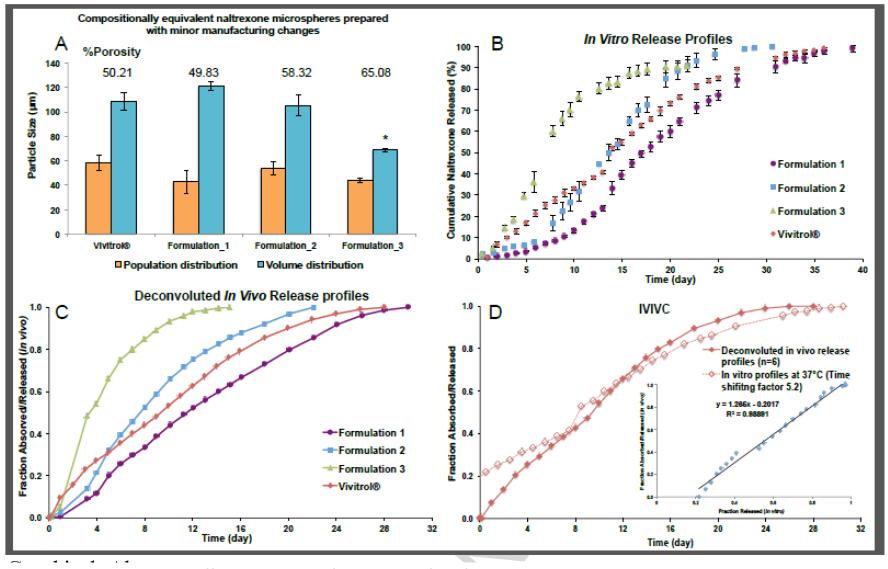

In vitro release profiles

USP Apparatus II Sample and separate



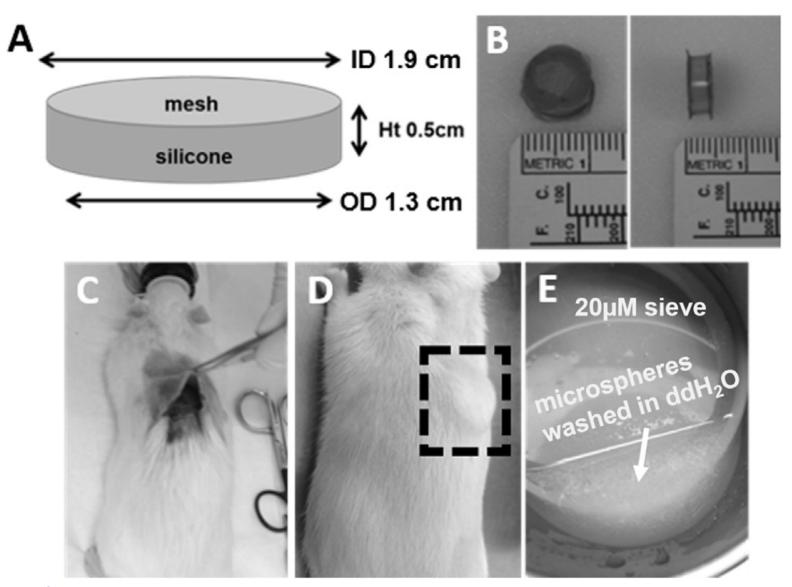
In vivo release profiles

Level A IVIVC

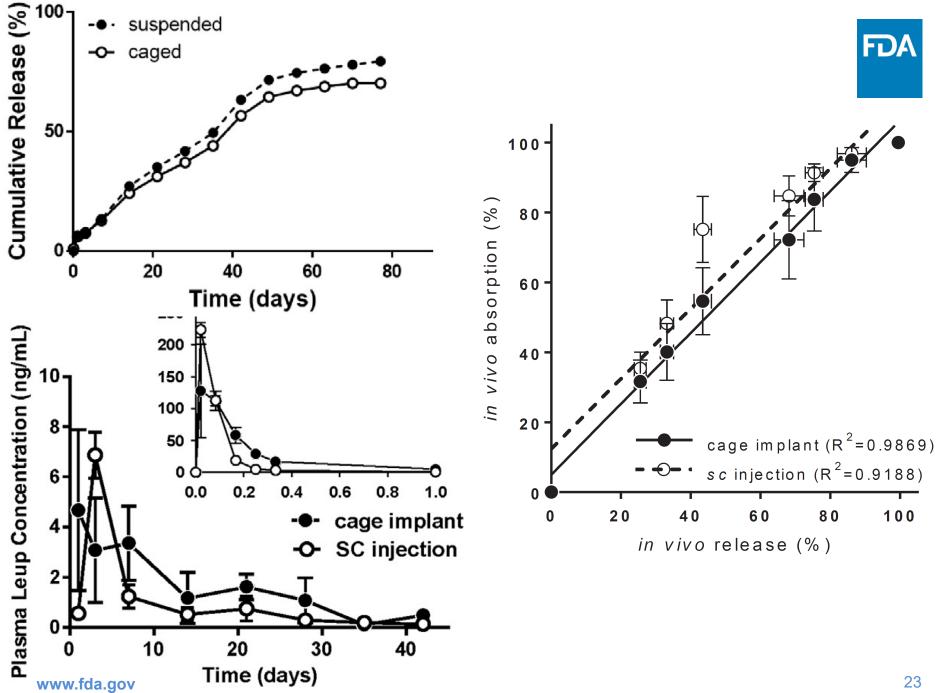


Validation and prediction of IVIVC

	C_{max} (µg/L)			AUC (µg/L * day)		
	Pred.	Obs.	%PE	Pred.	Obs.	%PE
Internal validation						
Formulation 2	19.64	41.62	- 52.81	188.26	200.41	-6.06
Formulation 3	40.49	29.98	35.06	219.14	229.07	-4.34
Formulation 4	35.58	28.68	24.08	201.12	220.95	-8.97
Average absolute %PE			37.32			6.46
External validation						
Formulation 1	26.71	27.99	-4.56	231.51	206.92	10.61
Prediction						
Risperdal® Consta®	41.32	38.29	7.90	248.69	248.50	0.08

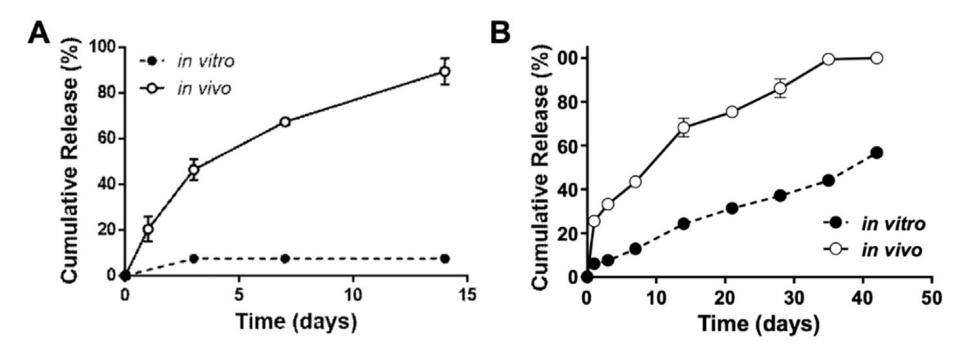

Level A IVIVC of naltrexone microspheres

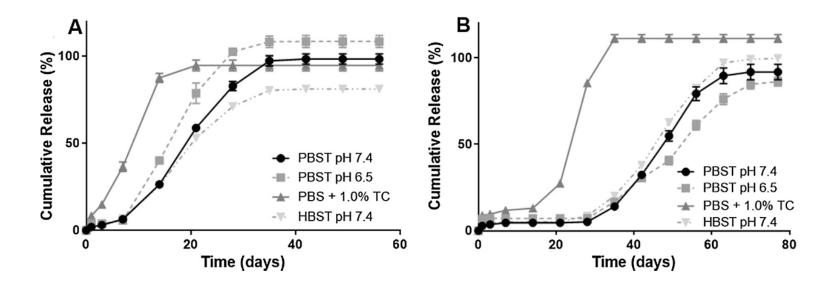
www.fda.gov


Andhariya J, et al. J Control Release. 2017 June 10;255:27-35

Cage model to assess in vivo release

www.fda.gov


Doty AC, et al. Biomaterials. 2016 Dec;109:88-96

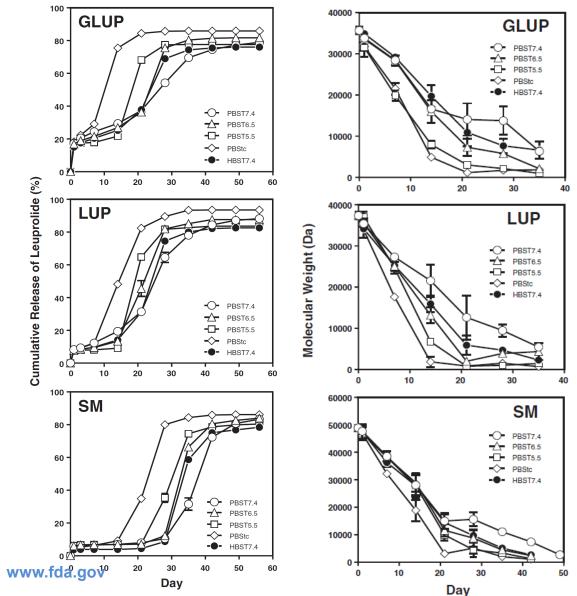

Understanding release mechanisms of drug from PLGA microspheres

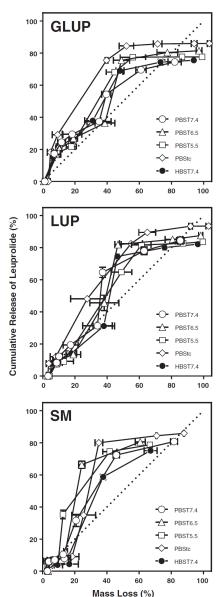
Triamcinolone-loaded microspheres

Leuprolide-loaded microspheres

Understanding release mechanisms of Tr-A from PLGA microspheres

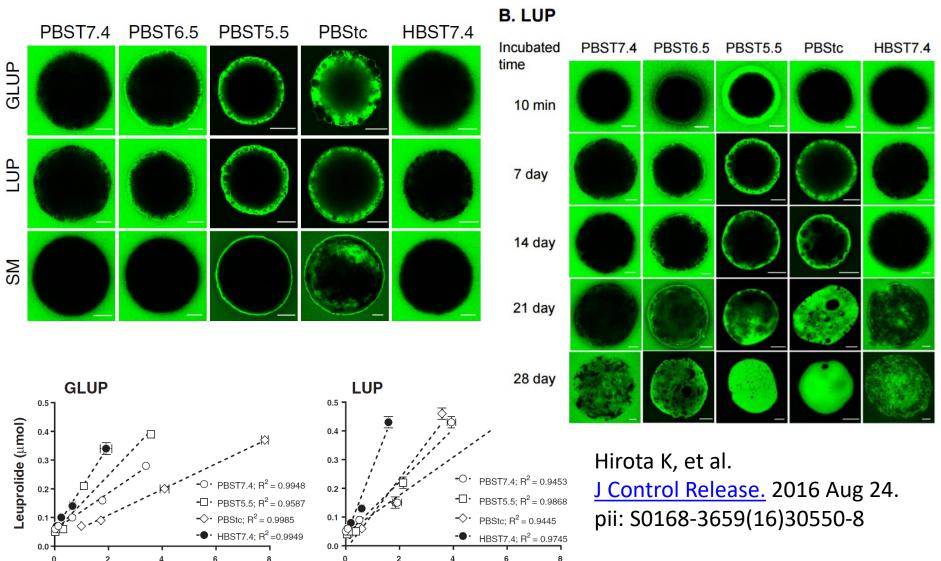
Characteristic times (in days) of release and erosion from Tr-A_1 and Tr-A_2 microspheres. Values represent mean \pm SEM, n = 3.T₅₀ ratios were calculated from mean values of t₅₀release and t₅₀mass loss in each media.

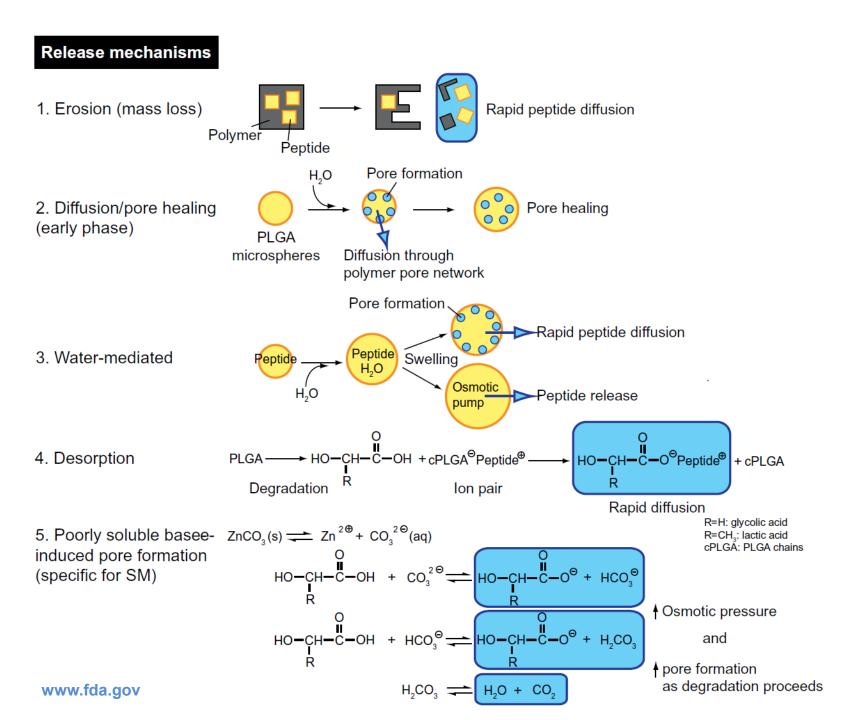

		PBST pH 7.4	PBST pH 6.5	PBS + 1.0% TC	HBST pH 7.4
Tr-A_1	t _{50,release}	19.0 ± 0.4	16.6 ± 0.4	8.0 ± 0.4 [*]	17.6 ± 0.2
	t _{50,erosion}	25 ± 8	18.6 ± 0.8	15 ± 1	18 ± 2
	t _{50,release} /t _{50,erosion}	0.77	0.89	0.52	0.96
Tr-A_2	t50,release	46.8 ± 0.6	50.1 ± 0.8	25.0 ± 0.3 [*]	46.1 ± 0.3
	t50,erosion	46 ± 3	39 ± 2	18 ± 2 ^{*†}	43 ± 2
	t50,release/t50,erosion	1.02	1.28	1.43	1.06


^{*} p < 0.05 compared to PBST pH 7.4.

[†] linear regression was used.

www.fda.gov

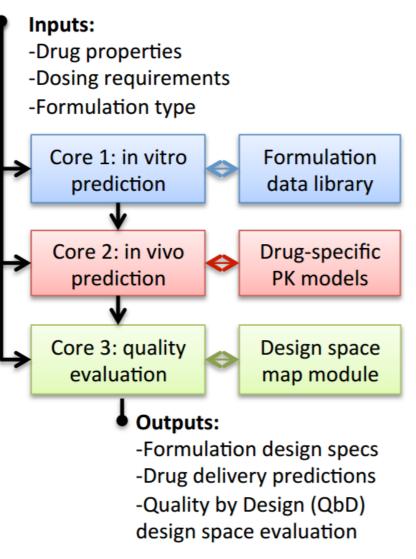

Understanding release mechanisms of Leuprolide from PLGA microspheres


26

Understanding release mechanisms of Leuprolide from PLGA microspheres

Water-soluble acid (µmol)

www.fda.gov



QronoMetrics

- Predictive software for design and development of biodegradable polymer drug products
- To develop a predictive mathematical model linking dissolution and PK profiles directly to critical quality attributes

QronoMetrics[™] Core Algorithm

Conclusions

- Understanding of PLGA properties is key for successful development of PLGA based LAI products
- Level A IVIVCs have been successfully developed for Q1/Q2 risperidone PLGA microspheres and Q1/Q2 naltrexone PLGA microspheres in an animal model
- A cage model has been validated to assess in vivo performance of microspheres
- Two model drugs have been tested in in vitro studies for further understanding of the mechanisms of drug release from PLGA microspheres
- Study results can be used to inform recommendations for product-specific guidances, pre-ANDA meeting requests, and Controlled Correspondences

Acknowledgements

FDA:	University of Connecticut: Diane Burgess
Stephanie Choi	
Darby Kozak	University of Michigan: Steven Schwendeman
Yuan Zou	
Ke Ren	Akina Inc.: Kinam Park
Bin Qin	
Xiaohui Jiang	Qrono Inc.: Sam Rothstein
Markham Luke	
Robert Lionberger	

Questions?

Yan Wang, Ph.D. Office of Research and Standards Office of Generic Drugs Yan.wang3@fda.hhs.gov

GDUFA Regulatory Science Website: <u>www.fda.gov/GDUFARegScience</u>