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Regulatory Impacts/Applications of 
PBPK for OINDPs

• Generic Orally Inhaled and Nasal Drug Product (OINDP) Development

– Inform product design and development

• Regulatory Utility

– Product specific guidance (PSG) development

– Potentially support alternative bioequivalence (BE) approaches including 
not conducting comparative clinical endpoint BE studies

www.fda.gov
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Why PBPK for OINDP Development?

• Product Specific Guidance (PSG) documents for generic 
locally-acting OINDPs

– Often recommend “weight of evidence” approach

– May include pharmacodynamic or comparative clinical endpoint BE 
studies

• Model to integrate formulation development, device 
development, and increase chance of showing BE for multiple 
studies

www.fda.gov
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Modeling Considerations for 
Locally-Acting OINDPs (Part 1)

www.fda.gov

Single-photon emission computerized tomography 

(SPECT) images – Figure 1 of Kwok et al. (2019)

Mucociliary clearance mechanisms – Figure 2 of 

Bustamente-Marin and Ostrowski (2017)

Regional Deposition Mucociliary Clearance
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Modeling Considerations for 
Locally-Acting OINDPs (Part 2)

www.fda.gov

Transwell volume-limited dissolution apparatus – Figure 2 

of Arora et al. (2010)
Macrophage uptake – Figure 2 of 

Hirota and Terada (2012)

Dissolution and Permeation Macrophage Uptake
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PBPK Modeling for Locally-
Acting OINDPs – Case Studies

• Poorly soluble compounds

– Regional transit due to mucociliary clearance

• Formulation changes for dry powder inhalers 
(DPIs)

– Carrier particle modification

www.fda.gov
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Case Study 1: Poorly Soluble 
OIDP Compound

• This case study describes work by Bäckman et al. (2017)

• New selective glucocorticoid receptor modulator, AZD5423 

• Poorly soluble in water, highly lipophilic

• PK data available for model building

– Study 1: Intravenous (IV), oral, two different nebulizers

– Study 2: IV, oral, two different nebulizers, two different DPIs

• PBPK: Relationship between in vitro parameters and PK exposure

– GastroPlus 9.0

• In vitro parameters: delivered dose, ex-mouth throat model (ex-MTM) dose, 
particle size distribution

www.fda.gov
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Figure 3 from Bäckman et al. (2017): For OIDP-delivered drug, correlations between 

area under the curve (AUC) and A) delivered dose to the lung, B) ex-mouth-throat-

model (ex-MTM) dose, and C) peripheral dose computed using semi-empirical model.

Delivered Dose and Ex-MTM 
Dose do not Predict AUC
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Figure 4 from Bäckman et al. (2017): For OIDP-delivered drug, correlations between observed and 

simulated A) maximum plasma concentration (Cmax) and B) area under the curve (AUC).

PBPK Predictions of AUC and 
Cmax Correlate Well with PK Data
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Case Study 2: Carrier Surface 
Modification for DPI Development

www.fda.gov

• This case study describes work by Wu et al. (2016)

• Albuterol sulfate delivered from Cyclocaps® 

• Carrier particle surface modification

– Glass beads as carrier particle substitutes

• Particle size characterized using Next Generation Impactor

• PBPK model: Relationship between particle size and PK exposure

– GastroPlus 8.6
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Figure 4C from Wu et al. (2016): Comparison of model Ventolin® 

MDI data from Du et al. (2002), where the built-in GastroPlus

regional deposition predictor was used as well as the Multiple-

Path Particle Dosimetry (MPPD) for regional deposition estimates.

• IV data from Goldstein et 
al. (1987) used to 
parameterize two 
compartment PK model

• Oral solution data and 
Ventolin® MDI data (Du 
et al. (2002) used to 
validate model

– No Cyclocaps® PK data 
available

PK Data Available for 
Model Building

Ventolin® MDI data
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Predictions Show Greater Cmax with 
Surface Engineered Glass Beads

Figure 3 from Wu et al. (2016): Particle size distribution data for 

Cyclocaps®, formulation with untreated glass beads, and 

formulation with treated glass beads, where standard deviation 

bars are given for each stage (n = 3) and results are presented 

with respect to emitted dose.
Figure 6 from Wu et al. (2016): Predicted plasma concentration for 

formulations with untreated and surface engineered glass beads using A) 

GastroPlus built-in regional deposition predictor and B) MPPD model.
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Enhancement for PBPK 
Models of OINDPs Using CFD

• Many PBPK models use semi-empirical models

– Cannot consider formulation and device differences 
on regional deposition

• Computational fluid dynamics (CFD)

– Capable of modeling product differences

– More precise mucociliary clearance modeling

www.fda.gov
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Quasi-3D CFD Model for 
Lung Absorption

• Computational fluid dynamics (CFD) 

– Regional deposition estimates

– Quasi-3D absorption model

• FDA Grant #1U01FD005214

– Generic Drug User Fee 
Amendments (GDUFA)

• New GDUFA-funded contract 
(#HHS223201810182C) based on 
same model

www.fda.gov

Local drug 

concentration 

predictions of 

solid and 

dissolved 

fluticasone 

propionate

Fig. 15 from 

Kannan et al. 

(2018)
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CFD and PBPK for Nasal Products

• PBPK model for nasal 
absorption 

• Fully 3D CFD model 
predicts deposition

• FDA Grant 
#1U01FD005201

– GDUFA

www.fda.gov

CFD predictions 

for deposition 

locations of 

fluticasone 

propionate 

droplets, from 

Kimbell et al. 

(2017)

Pharmacokinetic 

(PK) predictions 

of fluticasone 

propionate nasal 

spray, from of 

Schroeter et al. 

(2017)
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Support Alternative 
Bioequivalence (BE) Approaches

• Local concentration predictions may identify 
more precise in vitro and/or PK studies

• Evidentiary burden would be much higher than 
for product development

• Pre-ANDA meeting

www.fda.gov
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Conclusions

• PBPK models can be used to inform product design and development 
of locally-acting OINDPs.

• Practical applications of PBPK for locally-acting OINDPs have 
considered a poorly soluble compound and a carrier particle 
modification.

• Computational fluid dynamics (CFD) is capable of predicting regional 
deposition while considering product differences.

• Alternative bioequivalence (BE) approaches for locally-acting OINDPs may 
be potentially supported by PBPK.

www.fda.gov
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