

Computational fluid dynamics (CFD) modeling for product development of generic OINDPs and for supporting novel BE approaches

Complex Generic Drug Product Development Workshop

September 13, 2018 Session 7: Complex Route of Delivery: OINDP

Ross Walenga, Ph.D.

Chemical Engineer

Division of Quantitative Methods and Modeling, Office of Research and Standards, Office of Generic Drugs CDER | US FDA

www.fda.gov

Regulatory Impacts/Applications of CFD

- Generic OINDP Product Development
 - Reduce number of device design changes
- Regulatory Utility
 - Support alternative bioequivalence (BE) approaches including not conducting clinical endpoint studies
 - Product specific guidance (PSG) development

Computational Fluid Dynamics (CFD)

MDI: SD

(uiuu/1) 0 20

2 3 Time (s)

- Prediction of fluid and particle transport
- Allows for consideration of realistic geometries
- Validated with in vitro or in vivo data

Metered Dose Inhaler (MDI)

FDA

Simulations from Longest et al. (2012)

Velocity (m/s)

DPI: QD

Dry Powder Inhaler (DPI)

In Vitro to In Vivo

Regional nasal deposition fraction of 10 µm particles with different spray cone diameters (Fig. 10 from Inthavong et al. (2008)

- Several in vitro parameters are commonly measured
- Effect on drug deposition largely unknown
- CFD can predict influence of these parameters

Product Development

Fig. 1 from Shur et al. (2012) – a) Handihaler and b) Cyclohaler

Fig. 6a from

Shur et al.

(2012) – NGI data at 20 L/min

- FDA Contract #HHSF223200910017C
 - Two different devices (Handihaler and Cyclohaler)
- Two modifications made to Cyclohaler, CFD used to optimize

FDA

Lung PBPK

FDA

- FDA Grant #1U01FD005214
- Physiologically-based pharmacokinetic (PBPK) model for lung absorption
- Fully 3D CFD predicts deposition, Quasi-3D CFD for absorption

Local drug concentration predictions of solid and dissolved fluticasone propionate Fig. 15 from Kannan et al. (2018)

Nasal PBPK

- FDA Grant #1U01FD005201
- PBPK model for nasal absorption
- Fully 3D CFD predicts deposition, compartmental model for absorption

Droplet Size

100 µm

CFD predictions for deposition locations of fluticasone propionate droplets, from Kimbell et al. (2017)

Spray Mass (%)

Pharmacokinetic (PK) predictions of fluticasone propionate nasal spray, from of Schroeter et al. (2017)

Novel Bioequivalence Approaches

CFD predictions of particle deposition locations in left lower lobe, from Choi et al. (2017)

www.fda.gov

- Pre-ANDA product development meeting
- Effects of in vitro parameter differences on regional deposition and PK
- CFD is capable of capturing small airway deposition

FDA

Context of Use

Decision Consequence

- American Society of Mechanical Engineers (ASME) Verification and Validation 40
- Model influence how much model is used
- Consequence of a wrong decision

FDA

Credibility Assessment

- Verification quality of computational model
- Validation ability of computational model to represent reality
- Uncertainty quantification sensitivity of model result to parameter uncertainty

Validation

Deposition fraction prediction in fluticasone propionate MDI, compared with in vitro data, from Figure 5 of Longest et al. (2012)

- In vitro deposition in rapid prototyped model
- In vivo radiolabeled aerosol with gamma scintigraphy

Deposition fraction prediction in budesonide DPI, compared with in vivo data, from Figure 6 of Tian et al. (2015)

Conclusion

- Computational fluid dynamics (CFD) is capable of predicting effects of device and in vitro parameters on in vivo performance
- Product development reduce number of device changes
- Support alternative bioequivalence (BE) approaches including not conducting clinical endpoint studies

Acknowledgements

- FDA/CDER/OGD/ORS
 - Andrew Babiskin
 - Kimberly Witzmann
 - Denise Conti
 - Bryan Newman
 - Sharad Mangal
 - Myong-Jin Kim
 - Liang Zhao
 - Lei Zhang
 - Robert Lionberger

- FDA/CDER/OPQ/ONDP
 - Renishkumar Delvadia
- FDA/CDER/OPQ/SS
 - Geng Tian
- FDA/CDER/OTS/OCP
 - Bhawana Saluja
- FDA/CDRH/OIR
 - Alex Rygg
- FDA/CDRH/OSEL
 - Tina Morrison
 - Brent Craven

- Applied Research Associates, Inc.
 - Jeffrey Schroeter
- CFD Research Corporation
 - Narender Singh
 - Ravi Kannan
 - Andrzej Przekwas
- University of Bath
 - Jag Shur
 - Robert Price
- University of North Carolina
 - Julie Kimbell
- Virginia Commonwealth University
 - Worth Longest
 - Michael Hindle

References

- Longest, P. W., Tian, G., Walenga, R. L., and Hindle, M. (2012) Comparing MDI and DPI Aerosol Deposition Using in Vitro Experiments and a New Stochastic Individual Path (SIP) Model of the Conducting Airways. Pharmaceutial Research, 29(6), 1670-1688.
- Inthavong K, Tian ZF, Tu JY, Yang W, Xue C. Optimising nasal spray parameters for efficient drug delivery using computational fluid dynamics. Computers in Biology and Medicine. 2008;38(6):713-26.
- Shur J, Lee S, Adams W, Lionberger R, Tibbatts J, Price R. Effect of device design on the in vitro performance and comparability for capsule-based dry powder inhalers. The AAPS journal. 2012;14(4):667-76.
- Kannan RR, Singh N, Przekwas A. A Compartment-Quasi3D multiscale approach for drug absorption, transport, and retention in the human lungs. International journal for numerical methods in biomedical engineering. 2018;34(5):e2955.
- Kimbell J, Schroeter J, Tian G, Walenga R, Babiskin A, Delvadia R. Estimating size-specific numbers of active pharmaceutical ingredient particles in the regional deposition of a nasal spray. J Aerosol Med Pulm Drug Deliv. 2017;30(3):18-19.
- Schroeter J, Kimbell J, Walenga R, Babiskin A, Delvadia R. A CFD-PBPK model to simulate nasal absorption and systemic bioavailability of intranasal fluticasone propionate. J Aerosol Med Pulm Drug Deliv. 2017;30(3):13-14.

References

- Bonsmann U, Bachert C, Delank KW, Rohdewald P. Presence of fluticasone propionate on human nasal mucosal surface and in human nasal tissue over a period of 24 h after intranasal application. Allergy. 2001;56(6):532-5.
- Choi J, LeBlanc LJ, Choi S, Haghighi B, Hoffman EA, O'Shaughnessy P, Wenzel SE, Castro M, Fain S, Jarjour N, Schiebler ML, Denlinger L, Lin C-L. Characteristics of inhaled particle deposition in the lungs of imaging-based asthma clusters: A numerical study. American Thoracic Society (ATS) 2018 (May 18-23, 2018), San Diego, California, United States.
- Gan L, Wang J, Jiang M, Bartlett H, Ouyang D, Eperjesi F, Liu J, Gan Y. Recent advances in topical ophthalmic drug delivery with lipid-based nanocarriers. Drug discovery today. 2013;18(5-6):290-7.