Bioequivalence Assessment for Complex Ophthalmic Products

November 6, 2018

Arto Urtti University of Helsinki University of Eastern Finland

Session: Non-traditional Approaches to BE and Biosimilars and Application of Clinical Pharmacology to Minimize Barriers to Generic Drug Substitution

Biography and Contact Information

- Professor of Biopharmaceutics at University of Helsinki and University of Eastern Finland
- Research expertise in ocular drug delivery and pharmacokinetics
- Research published in more than 300 journal papers
- Contact information: arto.urtti@helsinki.fi, arto.urtti@uef.fi

BARRIERS IN TOPICAL OCULAR DRUG DELIVERY

Drainage factors

- Solution flow
- induced lacrimation
- Tear turnover

Tissue barriers

- Cornea
- Conjunctiva
- Sclera

Corneal Absorption

Ocular drug absorption

Permeation factors

- Biological barriers
- Drug
- Formulation

Contact time factors

- Tear flow
- Eye response to instillation
- Drug
- Formulation

Complex formulations: suspensions, emulsions

Physical chemical factors

- Particle size distribution
- Drug solubility
- Viscosity / mucoadhesion
- pH
- Tonicity

- Impact of the factors on
 - Bioavailability
 - Bioequivalence
 - Efficacy and safety

Ocular suspensions

Slide 8

SUSPENSION KINETICS

Particle size effects
→ Contact time?
→ Dissolution rate?

Viscosity → Contact time?

Fluorometholone absorption from suspensions and solutions in rabbits

Drug concentrations in the aqueous humor:

Suspension > saturated solution

Particle size 2.5 μ m > Particle size 10.4 μ m

Concentrations increase less than proportionally with the dose (solution, suspension 0.1% and 0.4%)

Conclusions

Dissolution rate affects bioavailability

Drug dissolution takes place in the tear fluid, but only part of the drug dissolves

Slide 10

Tests with indomethacin suspensions

Sample	Particle size d(0.5) μm	Calculated viscosity (mPa s)	Osmolality mOsm/kg	рН
INDO1	0.43	≈ 1.3 (HPMC ES)	241	5.80
INDO2	1.33	≈ 7.0 (HPMC4000)	239	5.90
INDO3	0.37	≈ 15 (HPMC K35M)	239	5.84
INDO4	3.24	≈ 1.3 (HPMC ES)	241	5.82
INDO5	3.49	≈ 7.0 (HPMC4000)	242	5.89
INDO6	3.12	≈ 15 (HPMC K35M)	236	5.91
Commercial	5.58	≈ 7 (measured)	232	5.90

FORMULATIC	DN Particle	size Viscosity
INDO 1	small	low
INDO 2	small	medium
INDO 3	small	high
INDO 4	large	low
INDO 5	large	medium
INDO 6	large	high
INDOM	large	medium

Indomethacin absorption to the aqueous humour in rabbits

Particle size shows about 2 fold differences in the AUC and smaller differences in C_{max} **Viscosity** shows about 4 fold differences in AUC and 2-3 range of C_{max}

Ocular suspensions

- Dissolution takes place in the tear fuid
- Only part of the particles dissolve, most particles are removed from the ocular surface undissolved
- Dissolution properties do influence ocular bioavailability (impact of particle size)
- Increased viscosity increases contact time and ocular absorption

Current BE assessment

Drug concentrations from the aqueous humour of patients.

Sparse samples from many patients.

A lot of work - may prevent development of generic products

Need for new approaches

Clearance factor in the dissolution test should mimic the situation In the tear fluid \rightarrow correct level of sensitivity on formulation factors. Permeability and dissolution combined ?

Slide 15

Impact of drug clearance from tear fluid on the release rate

Simulations

Conclusions

In sink conditions release rate ranges over 7.5 fold.

For the same formulations, dissolution rates range less than 7.5 fold under clearance conditions of tear fluid

For example, $CL = 1 \mu l/min \rightarrow 1.1$ fold range $CL = 20 \mu l/min \rightarrow 2.5$ fold range

Dissolution tests in sink conditions over-estimate the importance of dissolution rate

Impact of particle size and viscosity on contact time

AUC of indomethacin in rabbit tear fluid after instillation of a suspension

Increased viscosity

- Increases ocular surface contact time
- Increases bioavailability

Increased particle size

- Increases ocular surface contact time
- Decreases bioavailability

Dissolution of large particles is slower than that of smaller particles.

Lacrimal sampling: solution and suspension withdrawn.

Absorption is driven by the concentration of the dissolved drug.

Slide 17

Conclusions

- Pharmacokinetics of complex formulations is complicated
- Two main parameters that define bioequivalence are contact time and dissolution rate on the ocular surface
- Particle size and viscosity have impact on contact time
- Particle size has impact on dissolution rate
- Tear sampling of *dissolved* drug suitable bioequivalence test ?
- Dissolution, permeation or contact time alone are not sufficient
- Simulation will be useful support to experimental work
- Species differences

Acknowledgements

University of Eastern Finland

Elisa Toropainen Marika Ruponen Kati-Sisko Vellonen

University of Helsinki

Clare Strachan Tapani Viitala Jonne Peltoniemi Sarah Fraser

FDA Stephanie Choi

Mohammad Absar

Absorption Systems

Vatsala Naageshwaran Sid Bhoopathy

Questions

Contact: arto.urtti@helsinki.fi, arto.urtti@uef.fi

Slide 20

