

Updates to the Simcyp Simulator's ADAM / M-ADAM Models

David Turner

Jan 29th 2020

This webinar is being recorded and will be made available to view on the Certara website in due course

FDA Grant 1U01FD005865

Simcyp Industrial **Consortium**

• Recent Additions

This webinar is being recorded and will be made available on the Certara website in due course

- ^o New Models
- ^o Tools "Wrappers" IVIVC, VBE, GSA (Global Sensitivity Analysis)
- Modelling Strategy Coupling in vitro experiments to PBPK modelling
- Case Studies / Examples
	- Tacrolimus ASD Formulation VBE
		- What extent of crystallisation leads to bioinequivalence?
	- \circ Excipient Solubilisation $\qquad -$ Why does formulating with a cyclodextrin reduce exposure?
		- Assess the optimal amount of cyclodextrin to use in a formulation
- Salt and Surface pH Models
- **Summary**
- QA

Major Additions to the Simcyp Oral Absorption Models

PPB – Particle Population Balance Model

Major Additions to the Simcyp Oral Absorption Models

Systems Pharmacology - Separating Systems & Drug Information

Input data:

- Compound file
- Population library
- Project (workspace)

Integrated Models:

- Simulation environment
- Multi-dimensional models/algorithms

Output data:

- Raw output data
- Data analysis
- Post processing

Mechanistic Models Form the Core – Various "Wrappers" are Available

Virtual BE – Significant regulatory support and interest

Increasing trends in using PBPK models to support regulatory decision making in the realm of generic drug development

BE: bioequivalence; PPI : proton pump inhibitor; GI: gastrointestinal ; DDI: drug-drug interaction

Zhao, Generic Drug Research Public Workshop May 2017, MD, USA

Virtual Bioequivalence Module – Simcyp Version 20

- 1) VBE Trial Design Most common designs available plus custom option
	- Crossover 2 Treatment, 2 Period, 2 Sequence (typical crossover BE)
	- Crossover 2T, 2P and 4S
	- Crossover partial replicate (2T, 3P, 4S)
	- Crossover full replicate (2T, 4P, 2S)
	- Crossover full replicate (2T, 4P, 4S)
	- Parallel (up to four treatments) different population allowed per treatment
	- Crossover custom design
- 2) Within Subject Variability is Added to Physiological Parameters **Parameters Selected for Within Subject Variability**

3) BE Analysis - Phoenix

Running Theme

- PBPK / PBBM modelling
	- o Informed by *in vitro* experiments

Running Theme

- PBPK / PBBM modelling
	- o Informed by *in vitro* experiments

Workflow SIVA-Simcyp

Modelling of *in vitro* experiments to inform PBPK simulations - learn confirm, QbD

Simcyp **I**n **V**itro data **A**nalysis Toolkit A standalone software for modelling *in vitro* experiments

SIVAToolkit

Pathak et al., 2017, 2019; Loisios-Konstantinidis et al., 2020; Hens et al., 2017.

Workflow SIVA-Simcyp

Modelling of *in vitro* experiments to inform PBPK simulations - learn confirm

SIVAToolkit

Simcyp **I**n **V**itro data **A**nalysis Toolkit A standalone software for modelling *in vitro* experiments

Add USP II/IV/µDiss Model Add Serial Dilution Model Add Transfer Model Add Two Phase Model

Pathak et al., 2017, 2019; Loisios-Konstantinidis et al., 2020; Hens et al., 2017.

Application of SIVA-Simcyp for Safe Space Identification

Establishing virtual bioequivalence and clinically relevant specifications using in vitro biorelevant dissolution testing and physiologically-based population pharmacokinetic modeling. case example: Naproxen

Ioannis Loisios-Konstantinidis^a, Rodrigo Cristofoletti^b, Nikoletta Fotaki^c, David B. Turner^e, Jennifer Dressman^{a,d,*}

Naproxen PBPK Model built

Particle Population Balance Model: PSD Import and Mapping Tools

- New PSD Tools including IMPORT from (e.g.) a Mastersizer instrument no need for d10,d50,d90
- Automatically map from raw Mastersizer data to user-defined number of PSD bins

- Switch between %volume and %count
- Interpolate or without interpolation

PSD Import Tools

- New PSD Tools including IMPORT from (e.g.) a Mastersizer instrument
- Automatically map from raw Mastersizer data to user-defined number of PSD bins

- Switch between %volume and %count
- Interpolate or without interpolation

PPB: Two Solid State Tools

 $SS1 \quad i=1$ Dissolution Rate $DR(t) = \sum_{i=1}^{3} \sum_{i=1}^{n-1} -N_i S_{DR} \frac{D_{eff}(t)}{h_{eff,i}(t)} 4\pi a_i(t) \Big(a_i(t) + h_{eff,i}(t) \Big) \Big(S_{surface}(t) - C_{bulk}(t) \Big)$ $\overline{SS2}$ NBINs

Separate PSD specification for each solid state

PPB: Two Solid State Tools

Separate PSD specification and dissolution (precipitation) modelling for each solid state

Solubility Precipitation

An Application of the PPB/Two Solid State Models

Tacrolimus an immunosuppressant was first approved in 1994 – Innovator Product Prograf®

Tacrolimus is a poorly water-soluble, neutral (non-ionizing) BCS 2 compound

Commercially formulated as an Amorphous Solid Dispersion (ASD)

An Application of the PPB/Two Solid State Models

Tacrolimus an immunosuppressant was first approved in 1994

– Innovator Product Prograf®

Tacrolimus is a poorly water-soluble, neutral (non-ionizing) BCS 2 compound Commercially formulated as an Amorphous Solid Dispersion (ASD)

There are a number of generic formulations containing amorphous drug

The Accord formulation is susceptible to crystallisation over time during storage under stress conditions.

Q: What degree of crystallinity renders the formulation bioinequivalent to the fully amorphous (intended) formulation?

Tacrolimus *In Vitro* **Dissolution Data**

© Copyright 2020 Certara, L.P. All rights reserved. 20

Tacrolimus *In Vitro* **Dissolution Data**

Which *in vitro* experiment (condition) is relevant to *in vivo*?

Which *in vitro* dissolution profiles should be directly input to a PBPK model? Is there an alternative approach?

Tacrolimus ASD – Potential Impact of Crystallisation During Storage

Tacrolimus ASD – Potential Impact of Crystallisation During Storage

HPMC Impact and Anticipated HPMC In Vivo Concentrations

HPMC Impact and Anticipated HPMC In Vivo Concentrations

In Vitro Induction Time for Tacrolimus Crystallisation

In vivo, precipitation is not expected

PBPK Simulated In Vivo HPMC Concentrations – 5.5 mg HPMC, 240 mL drink Stomach Duodenum Prox. Jejunum Colon 120 120 120 400 100 Cmax ~20 $\begin{vmatrix} 100 \\ 20 \end{vmatrix}$ ~50 $\begin{vmatrix} 100 \\ 20 \end{vmatrix}$ ~110 $\begin{vmatrix} 350 \\ 300 \end{vmatrix}$ ~350 80

Mechanistic dissolution model with two solid states applied

PBPK Simulation Results 50 subjects HVs, NEC Mean Profiles

Mean Values of Systemic concentration in blood (A) of RV-Tacrolimus over Time

Degree of crystallinity has significant impact on simulated PK

Mechanistic dissolution model with two solid states applied

Degree of crystallinity has significant impact on PK

PBPK Simulation Results 50 subjects HVs, NEC

Mean Profiles Alternative Approach for an Average Subject: Sensitivity Analysis on "Fraction"

Rapid assessment of potential impact of increasing degree of crystallinity

CERTARA

Tacrolimus VBE

Mechanistic Dissolution Model with two solid states

T/R Ratio Ref -Fully amorphous form Test – a partially crystallised form

2-way Crossover VBE evaluating the PK metrics Cmax and AUC0-t of 50 Healthy Volunteers

VBE performed in R in this example

Mechanistic modelling, in this case, removed the need for potentially complex *in vitro* dissolution experiments with an absorptive phase/component.

In Vivo **Relevance of** *In Vitro* **Conditions: Tacrolimus BCS 2**

Even with precipitation blocked, simulated *in vivo* luminal concentrations are very low compared to *in vitro* concentrations

High permeability drug …

Excipient Binding Case Study

Drug X – Simcyp Consortium Member (Pharma) Compound BCS 2

Low intrinsic solubility (<1 µg/mL), high *Peff*, log*Pow* 3 - 4 Low basic pKa

Precipitation risk

Cyclodextrin Binding Case Study

Drug X – Simcyp Consortium Member (Pharma) Compound

BCS 2

Low intrinsic solubility (<1 µg/mL), high *Peff*, log*Pow* 3 - 4 Low basic pKa

Precipitation risk

Drug X was formulated with 8 g Cyclodextrin with the aim to increase solubility, reduce precipitation risk

Clinical study: AUC, Cmax reduced significantly, tmax increased significantly

Explanation? PBPK Modelling …

Substrate – Drug X Inhibitor 1 – HPCD

Absorption Model: ADAM Absorption Model: ADAM

Substrate – Drug X Inhibitor 1 – HPCD

Absorption Model: ADAM Absorption Model: ADAM

CERTARA^Q

Substrate (Drug X)

Permeability Model: MechPeff

UBL = unstirred boundary (mucus/water) layer, local pH buffered to narrow range

Pade *et al.,* 2018 *BDD*

© Copyright 2020 Certara, L.P. All rights reserved. 34

Permeability Model: MechPeff

In vitro solubility available (in house) over a range of $HP\beta CD$ concentrations

In vitro solubility available (in house) at a range of $HP\beta CD$ concentrations

constant

CERTARA^C

Simulations Predict that Binding to $HP\beta CD$ significantly reduces Cmax and AUC This could have been anticipated prior to the clinical study

Mean Profiles (100 simulated HVs)

ms. to be submitted by Simcyp Industrial Consortium Member

Time-Variant Effective Gut Wall Permeability ⁰

Peff is dramatically decreased at peak HP_BCD concentration

PUBL (t) = Deff,UBL (t) / UBL thickness

Flux across the UBL (mucus/water layer is increased

$$
D_{eff, UBL}(t)
$$

= $f_{ionised, UBL}(t) \cdot D_{ionised}$
+ $f_{neutral, UBL}(t) \cdot D_{neutral}$
+ $f_{micelle, UBL}(t) \cdot D_{micelle}$
+ $f_{excip, UBL}(t) \cdot D_{excip_eff}$

Free fraction decreases significantly

– this is the dominant effect of CD binding in this example … – model could be applied to other excipients

Evidence for Cyclodextrin Binding Impact Upon Peff

<u>molecular</u> *pharmaceutics*

pubs.acs.org/molecularpharmaceutics

Article

Toward Successful Cyclodextrin Based Solubility-Enabling Formulations for Oral Delivery of Lipophilic Drugs: Solubility-Permeability Trade-Off, Biorelevant Dissolution, and the Unstirred **Water Layer**

Noa Fine-Shamir,[‡] Avital Beig,[‡] Moran Zur,[‡] David Lindley,[†] Jonathan M. Miller,^{†,§} and Arik Dahan^{*,‡}

In Vivo Rat Perfusion Studies: Danazol Peff vs HPβCD Concentration

Fine-Shamir et al 2017 *Mol Pharm 14*:2138

Automated Sensitivity Analysis on CD Dose

Estimation of Optimal Excipient Amount in a Formulation

Estimation of Optimal Excipient "Dose"

Too much CD can inhibit absorption, very low free fraction Too little CD, insufficient solubilisation

In Vitro: Acetazolamide Flux vs HPβCD Concentration

Loftsson et al 2011 *J Pharm Pharmacol* 63:1119

Estimation of Optimal Excipient Amount in a Formulation

Estimation of Optimal Excipient "Dose"

Too much CD can inhibit absorption, very low free fraction Too little CD, insufficient solubilisation

In Vitro: Acetazolamide Flux vs HPβCD Concentration

Loftsson et al 2011 *J Pharm Pharmacol* 63:1119

Sensitivity Analysis on CD Dose: Hypothetical Drug

V19 Additions: Salt Model and Surface Solubility

1. Tools for Handling Salts of API and Salt limited Solubility (Ksp Model)

2. Surface Solubility Models for acids, bases, ampholytes including Salts

Particle (surface) microenvironment pH and solubility

V19 Additions: Salt Model

- 1. Tools for Handling Salts of API and Salt limited Solubility (Ksp Model)
	- Drug product
		- Formulated as a salt (~50% of top 200 US prescription drugs Prohotsky 2012)
		- Formulated as free acid/base/ampholyte with solubility limited by endogenous ions
	- Common ion effect (e.g., HCl salt drug product + endogenous chloride ion)

• Precipitation to salt or free acid/base

V19 Additions: Salt Model

1. Tools for Handling Salts of API and Salt limited Solubility (Ksp Model)

- Drug product formulated as a salt (~50% of top 200 US prescription drugs Prohotsky 2012)
- Free acid/base/ampholyte API with solubility limited by endogenous ions
- Common ion effect (e.g., HCI salt drug product + endogenous chloride ion)
- Precipitation to salt or free acid/base
- Disproportionation during storage (e.g., 80% salt, 20% free form)

V19 Additions: Salt Model

1. Tools for Handling Salts of API and Salt limited Solubility (Ksp Model)

- Drug product formulated as a salt (~50% of top 200 US prescription drugs Prohotsky 2012)
- Free acid/base/ampholyte API with solubility limited by endogenous ions
- Common ion effect (e.g., HCI salt drug product + endogenous chloride ion)
- Precipitation to salt or free acid/base
- Disproportionation during storage (e.g., 80% salt, 20% free form)
- Ksp limited solubility

Haloperidol Experimental Solubility-pH Profile (basic pKa ~8.5)

© Copyright 2020 Certara, L.P. All rights reserved. 47

1. Advantages of Surface pH Model: Haloperidol Free Base (Non-Salt)

In vitro data: Li et al., 2005 *Pharm Res*

1. Advantages of Surface pH Model: Haloperidol Free Base (Non-Salt)

CERTARA^O

2. Advantages of Salt + Salt Surface pH Model: Haloperidol Salt

In vitro data: Li et al., 2005 *Pharm Res*

2. Salt + Salt Surface pH Model: Haloperidol Salt

In vitro data: Li et al., 2005 *Pharm Res*

CERTARA^O

2. Salt + Salt Surface pH Model: Haloperidol Salt

In vitro data: Li et al., 2005 *Pharm Res*

CERTARA^O

Summary

Recent Additions New Models Tools – "Wrappers" – IVIVC, VBE GSA - Global Sensitivity Analysis Coupling in vitro experiments with PBPK Modelling

Case Studies / Examples

Cyclodextrin (Excipient Binding/Solubilisation/Permeability interplay) Tacrolimus (VBE, formulation BE)

Salt and Surface pH Models

Acknowledgments

Funding Simcyp Consortium

FDA Grant 1U01FD005865

Team

Disclaimer

"The views expressed in this presentation are those of the author and should not be construed to represent the U.S. Food and Drug Administration (FDA)'s views or policies. The mention of commercial products, their sources, or their use in connection with material reported herein is not to be construed as either an actual or implied endorsement of such products by the FDA."

Note: The Simcyp Simulator is freely available, following completion of the relevant workshop, to approved members of academic institutions and other not-for-profit organizations for research and teaching purposes.

This webinar, upcoming and past webinars:<https://www.certara.com/webinars/>

Upcoming Workshops: <https://www.certara.com/resource-library/simcyp-workshops/?ap=PBPK>

Questions?

Extra Slides

The Multi-compartment Gut Wall ADAM (M-ADAM) Model

Applying Knowledge Gained from In Vitro Experiments

Obtain Model settings for PBPK simulations?

Mechanistic modelling, in this case, removed the need for potentially complex *in vitro* dissolution experiments with an absorptive phase/component.

Danirixin Hydrobromide (DNX HBr) Case Study

Compared to "Free" API forms salts can provide

- Dissolution rate advantage
- "Solubility" advantage provided there is not precipitation to the free form (DNX is an ampholyte >99% ionised in physiological pH range)

pH Solubility Profiles of Free Ampholyte DNX Measured at 3 Time Points up to 24 h

 \overline{XXX} Solubility at given time and pH

NB It is assumed that the reported pH values are the final pH values and the reported pH values are the final pH values

Refs: 1) GSK patent WO 2015/071235 Al **CERTARA^Q**

Tacrolimus *In Vitro* **Dissolution Data**

What (maximum) luminal concentrations of tacrolimus do we expect in vivo?

Run simulations with precipitation prevented – this can give estimates of maximum conc.

In Vitro data Purohit et al, 2018

CERTARA^O

LUA Scripting Tools – Custom Models – Research Tool

```
Substrate: PD Basic 1
                                                                                  \Box\times\overline{\phantom{0}}File Edit Options Tools Functions
25
26 \Box function popSimSetup(...)
27
         --set the number of differential equations used in the model
28
         sc:setNUserOdes(27);
29-- assign names to user state variables (for output on "PD Custome ODE" WS
30<sup>1</sup>local SEG names = { "Stomach", "Duodenum", "Jejunum 1", "Jejunum 2", "Ileum 1
31local su \overline{\text{name}} = \{\}:
32<sup>1</sup>for i=1, 9 do
33
              su nname[i] = tostring("Vfood " .. SEG names[i] .. " (mL)");
34sc:setUserStateName(i,su nname[i]);
35<sup>2</sup>end
36for i=10,18 do
37
              su nname[i] = tostring("Fdil " .. SEG names[i-9]);
38<sup>2</sup>sc:setUserStateName(i,su nname[i]);
39<sup>2</sup>--sc:setUserStateName(index, name)
40<sup>1</sup>end
41for i=19,27 do
42su nname[i] = tostring("Viscosity " . SEG names[i-18] . " (cP)");
43<sup>1</sup>sc:setUserStateName(i,su nname[i]);
44--sc:setUserStateName(index, name)
45end
46end
47 \Box function individual Setup (...)
         --get transit rate constants, ids from AB 9/4/2019 v18
4849
         -- idSITransitTime, -- idGastricET, -- idColonTransitTime
50
         -- idFluidIntakeSub, idFluidIntakeInh1 - these two NOT available in v18
51MRT stomach = sc: GetIndividualValueByID("idGastricET");
52kt seg[1] = 1 / MRT stomach;
53
         MRT SI = sc:GetIndividualValueByID("idSITransitTime");
54
         --assign kt SI
55
         for i=2,8 do
56
              kt_seg[i] = 1 / (MRT_SI * SI_fractions[i-1]);57
         end
58
         MRT Colon = sc:GetIndividualValueByID("idColonTransitTime")
59
         kt seg[9] = 1 / MRT Colon;
60
    end
61 \Box function compoundSetup(...) -- this assigns values to array P
62
         -- assign some parameters to P[]
63
         sc:setParameter(1, 531) --Vfood initial stomach
64
         sc:setParameter(2, 0) --Vfood initial duo
65
         sc:setParameter(3, 0.1) --Vfood base line or minimum global
66
         sc:setParameterName(1, "Vfood init");
67
         sc: setParameterName(2, "Vfood initial duo");
68
         sc:setParameterName(3, "Vfood base line or minimum global");
69 - end70
    --function individualCompoundSetup(...)
71asseign individualized narameter values from distribution
                           \blacksquare
```


Danirixin Hydrobromide (DNX HBr) Case Study

Compared to "Free" API forms salts can provide

- Dissolution rate advantage
- "Solubility" advantage provided there is not precipitation to the free form (DNX is an ampholyte >99% ionised in physiological pH range)

pH Solubility Profiles of Free Ampholyte DNX and DNX HBr Salt Measured at 3 Time Points up to 24 h

NB It is assumed that the stated pH values are the final pH values

 \overline{XXX} Solubility at given time and pH

The HBr salt

- Creates solutions that are supersaturated with respect free ampholyte
- That is quite stable up to 24 h (very stable at pH 4)

Refs: 1) GSK patent WO 2015/071235 Al 2) Bloomer et al., 2017 **CERTARA^Q**

Salt Model Danirixin Case Study

Danirixin Hydrobromide (DNX HBr) Case Study

Compared to "Free" API forms salts can provide

- Dissolution rate advantage
- "Solubility" advantage provided there is not precipitation to the free form (DNX is an ampholyte >99% ionised in physiological pH range)

pH Solubility Profiles of Free Ampholyte DNX and DNX HBr Salt Measured at 3 Time Points up to 24 h

NB It is assumed that the stated pH values are the final pH values

 \overline{XXX} Solubility at given time and pH

The HBr salt

- Creates solutions that are supersaturated with respect free ampholyte
- That is quite stable up to 24 h (very stable at pH 4)

Refs: 1) GSK patent WO 2015/071235 Al 2) Bloomer et al., 2017

© Copyright 2020 Certara, L.P. All rights reserved. 65

CERTARA

VBE Covariate Analysis – example

Simulation – Reference – Amorphous (100%)

– Test – Amorphous (90%) + Crystalline (10%)

Each marker point relates to a single subject

Residence time in the gut lumen is also a key covariate

Clinical Example: Tween 80 (T80) was used to solubilise an extremely lipophilic BCS 2 compound, low basic pKa – Drug "Y" S_o, API alone <10 ng/mL (predicted) T80 self-associates to form micelles (CMC 0.012 mM)

Figure 1: Aqueous phase equilibrium solubility of Drug Y in the presence of 1.7 mM Tween 80 (no bile salts).

Analogous data following the same pattern were available for a TPGS formulation and a "Quotient" Formulation containing another solubiliser

Importance of Dissecting the Components of Solubility – free fraction

$$
S_{Tot}(t) = S_0 \cdot S_{0_{scalar}}(t) \cdot \left(1 + \frac{[BS](t)}{C_{H_2O}} \cdot K_{m:w, unionised}(t)\right)
$$

$$
+S_i(t) \cdot \left(1 + \frac{[BS](t)}{c_{H_2O}} \cdot K_{m:w, ionised}(t)\right) + S_{bound,excip}(t)
$$

Diffusion coefficients Luminal fluids – dissolution UBL/Mucus/water – permeability (ADAM/MechPeff model or M-ADAM only)

Free concentration at UBLmembrane interface

Equation 1

Identifiability of *Km:w* values? Please do measurements in more than 2 biorelevant media!

$$
P_{eff} = \left(\left(\left(P_{trans,0}.f_{neutral, pH} + P_{para} \right) \cdot ACC \cdot MVE \cdot f_{u, UBL} \right)^{-1} + \left(P_{UBL} \right)^{-1} \right)^{-1} \cdot FE_p
$$

$$
P_{UBL} = \frac{D_{eff,UBL}}{h_{eff,UBL}}
$$

© Copyright 2020 Certara, L.P. All rights reserved. 68

CERTAR