

# Updates to the Simcyp Simulator's ADAM / M-ADAM Models

## **David Turner**

Jan 29th 2020

This webinar is being recorded and will be made available to view on the Certara website in due course



FDA Grant 1U01FD005865

Simcyp Industrial Consortium Recent Additions

This webinar is being recorded and will be made available on the Certara website in due course

- New Models
- Tools "Wrappers" IVIVC, VBE, GSA (Global Sensitivity Analysis)
- Modelling Strategy Coupling in vitro experiments to PBPK modelling
- Case Studies / Examples
  - Tacrolimus ASD Formulation VBE
    - What extent of crystallisation leads to bioinequivalence?
  - Excipient Solubilisation Why does formulating with a cyclodextrin reduce exposure?
    - Assess the optimal amount of cyclodextrin to use in a formulation
- Salt and Surface pH Models
- Summary
- QA

#### Major Additions to the Simcyp Oral Absorption Models



#### **PPB – Particle Population Balance Model**

#### Major Additions to the Simcyp Oral Absorption Models



#### **Systems Pharmacology - Separating Systems & Drug Information**



Input data:

- Compound file
- Population library
- Project (workspace)

Output data:

- Raw output data
- Data analysis
- Post processing

#### **Mechanistic Models Form the Core – Various "Wrappers" are Available**



### Virtual BE – Significant regulatory support and interest



Increasing trends in using PBPK models to support regulatory decision making in the realm of generic drug development

BE: bioequivalence; PPI : proton pump inhibitor; GI: gastrointestinal ; DDI: drug-drug interaction

Zhao, Generic Drug Research Public Workshop May 2017, MD, USA

### Virtual Bioequivalence Module – Simcyp Version 20

- 1) VBE Trial Design Most common designs available plus custom option
  - Crossover 2 Treatment, 2 Period, 2 Sequence (typical crossover BE)
  - Crossover 2T, 2P and 4S
  - Crossover partial replicate (2T, 3P, 4S)
  - Crossover full replicate (2T, 4P, 2S)
  - Crossover full replicate (2T, 4P, 4S)
  - Parallel (up to four treatments) different population allowed per treatment
  - Crossover custom design
- 2) Within Subject Variability is Added to <u>Physiological Parameters</u> Parameters Selected for Within Subject Variability

| Para | Selected Parameter                 | Distribution | Variation (CV%) | Minimum Limit | Parameter Value | Maximum Limit |  |
|------|------------------------------------|--------------|-----------------|---------------|-----------------|---------------|--|
|      | Mean Gastric Emptying Time Fasted  | LogNormal 🔻  | 35              | 0.07          | 0.4             | 0.45          |  |
|      | Mean Small Intestinal Transit Time | LogNormal 🔻  | 23              | 1             | 3.3             | 5             |  |

### 3) BE Analysis - Phoenix



8



### **Running Theme**

- PBPK / PBBM modelling
  - Informed by *in vitro* experiments





### **Running Theme**

- PBPK / PBBM modelling
  - Informed by in vitro experiments





### Workflow SIVA-Simcyp

Modelling of in vitro experiments to inform PBPK simulations - learn confirm, QbD



<u>Simcyp In Vitro data Analysis</u> Toolkit A standalone software for modelling *in vitro* experiments

**SIVA** Toolkit

Pathak et al., 2017, 2019; Loisios-Konstantinidis et al., 2020; Hens et al., 2017.

### Workflow SIVA-Simcyp

Modelling of in vitro experiments to inform PBPK simulations - learn confirm



SIVA Toolkit

<u>Simcyp</u> In <u>V</u>itro data <u>A</u>nalysis Toolkit A standalone software for modelling *in vitro* experiments



Add USP II/IV/µDiss Model Add Serial Dilution Model Add Transfer Model Add Two Phase Model

Pathak et al., 2017, 2019; Loisios-Konstantinidis et al., 2020; Hens et al., 2017.

### **Application of SIVA-Simcyp for Safe Space Identification**

Establishing virtual bioequivalence and clinically relevant specifications using *in vitro* biorelevant dissolution testing and physiologically-based population pharmacokinetic modeling. case example: Naproxen

Ioannis Loisios-Konstantinidis<sup>a</sup>, Rodrigo Cristofoletti<sup>b</sup>, Nikoletta Fotaki<sup>c</sup>, David B. Turner<sup>e</sup>, Jennifer Dressman<sup>a,d,\*</sup>



Naproxen PBPK Model built

### Particle Population Balance Model: PSD Import and Mapping Tools

- New PSD Tools including IMPORT from (e.g.) a Mastersizer instrument no need for d10,d50,d90
- Automatically map from raw Mastersizer data to user-defined number of PSD bins



- Switch between %volume and %count
- Interpolate or without interpolation

### **PSD Import Tools**

- New PSD Tools including IMPORT from (e.g.) a Mastersizer instrument
- Automatically map from raw Mastersizer data to user-defined number of PSD bins



- Switch between %volume and %count
- Interpolate or without interpolation



© Copyright 2020 Certara, L.P. All rights reserved.

#### **PPB: Two Solid State Tools**

SS1 i=1Dissolution Rate  $DR(t) = \sum_{i=1}^{351} \sum_{i=1}^{i=1} -N_i S_{DR} \frac{D_{eff}(t)}{h_{eff,i}(t)} 4\pi a_i(t) \left(a_i(t) + h_{eff,i}(t)\right) \left(S_{surface}(t) - C_{bulk}(t)\right)$ SS2 NBINS

| Solid State 1 Solid State 2    |     | Solid |
|--------------------------------|-----|-------|
| Particle Size Distribution     | PSD | Pai   |
| ○ Monodispersed Radius (µm) 10 |     | ۲     |
| Polydispersed                  |     | 0     |

| Solid State 1              | Solid St | ate 2       |   |  |  |  |  |
|----------------------------|----------|-------------|---|--|--|--|--|
| Particle Size Distribution |          |             |   |  |  |  |  |
| Monodispersed              |          | Radius (µm) | 4 |  |  |  |  |
| O Polydisp                 | ersed    |             |   |  |  |  |  |

Separate PSD specification for each solid state



#### **PPB: Two Solid State Tools**

| $DR(t) = \sum_{SS2}^{SS1} \sum_{NBINS}^{i=1} -N_i S_{DR} \frac{D_{eff}(t)}{h_{eff,i}(t)}$ | $\frac{1}{2}4\pi a_i(t)\left(a_i(t)\right)$ | $+ h_{eff,i}(t) \Big) \Big( S_{surface}(t) - C_{bulk}(t) \Big)$ |  |  |
|-------------------------------------------------------------------------------------------|---------------------------------------------|-----------------------------------------------------------------|--|--|
| Solid State 1 Solid State 2                                                               |                                             | Solid State 1 Solid State 2                                     |  |  |
| Particle Size Distribution                                                                | PSD                                         | Particle Size Distribution                                      |  |  |
| O Monodispersed Radius (μm) 10                                                            | 150                                         | Monodispersed Radius (µm)                                       |  |  |
| Polydispersed                                                                             |                                             | O Polydispersed                                                 |  |  |

Separate PSD specification and dissolution (precipitation) modelling for each solid state

Solubility

#### **Precipitation**

| 🦪 Model Two Solid Sta                                                                                                        | ates Fraction                        | in Dose (%)       | 100               | 0                       |         | Model Two Solid States        | Fraction in Dose (%)          | Solid State 1      | Solid State 2        |
|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-------------------|-------------------|-------------------------|---------|-------------------------------|-------------------------------|--------------------|----------------------|
| General Aqueous Phase Solu                                                                                                   | ubility Bile Micelle N               | lediated Solubili | ty Supersaturatio | on and Precipitation    |         | model two solid states        | Hactor in Dose (76)           |                    | -                    |
| Equation Solid State 1 Soli                                                                                                  | d State 2                            |                   |                   |                         | General | Aqueous Phase Solubility      | Bile Micelle Mediated Solubil | ity Supersaturatio | on and Precipitation |
| Solid State 1<br>Solid State 1 is the Solid State of the Dosage Form unless a Dual Solid State Formulation is selected (Form |                                      |                   |                   | ation is selected (Forn | 🍼 Pr    | recipitation to Solid State 1 | Precipitation to Soli         | d State 2          |                      |
| Aqueous Phase Solubility (mg/mL)                                                                                             |                                      |                   | Solid             | State 1 Solid State 2   |         |                               |                               |                    |                      |
| Intrinsic Solubility (S <sub>o</sub> )                                                                                       | • User Input                         | 0.05              | O Predicted       | 0.456705                | ۲       | First Order Models            |                               |                    |                      |
|                                                                                                                              | <ul> <li>Solubility at pH</li> </ul> | 0.05<br>7.4       | Intrinsic *       | 0.04440921              |         |                               |                               |                    |                      |
| View Solubility-pH Profile                                                                                                   | O User Solubility-                   | pH Profile        |                   |                         |         |                               |                               |                    |                      |
| Particle Surface Solubi                                                                                                      | lity                                 |                   |                   |                         |         |                               |                               |                    |                      |



### An Application of the PPB/Two Solid State Models

#### Tacrolimus an immunosuppressant was first approved in 1994 – Innovator Product Prograf®

Tacrolimus is a poorly water-soluble, neutral (non-ionizing) BCS 2 compound

Commercially formulated as an Amorphous Solid Dispersion (ASD)



### An Application of the PPB/Two Solid State Models

Tacrolimus an immunosuppressant was first approved in 1994

– Innovator Product Prograf<sup>®</sup>

Tacrolimus is a poorly water-soluble, neutral (non-ionizing) BCS 2 compound Commercially formulated as an Amorphous Solid Dispersion (ASD)

#### There are a number of generic formulations containing amorphous drug

The Accord formulation is susceptible to crystallisation over time during storage under stress conditions.

**Q:** What degree of crystallinity renders the formulation bio<u>in</u>equivalent to the fully amorphous (intended) formulation?



### **Tacrolimus** In Vitro Dissolution Data





### **Tacrolimus** In Vitro Dissolution Data



Which *in vitro* experiment (condition) is relevant to *in vivo*?

Which *in vitro* dissolution profiles should be directly input to a PBPK model? Is there an alternative approach?

### **Tacrolimus ASD** – Potential Impact of Crystallisation During Storage

| Formulation Type Transit Times Diffusion Layer Model Luminal Degrad                                                    | ation                            |     |               |
|------------------------------------------------------------------------------------------------------------------------|----------------------------------|-----|---------------|
| Solid State 1<br>Model Two Solid States Fraction in Dose (%)                                                           | Solid State 2<br>70              |     |               |
| General Aqueous Phase Solubility Bile Micelle Mediated Solubility Supersaturation and Precipitation                    | Intrinsic Solubility, So (µg/mL) |     |               |
| Equation Solid State 1 Solid State 2                                                                                   |                                  |     |               |
| Solid State 1<br>Solid State 1 is the Solid State of the Dosage Form unless a Dual Solid State Formulation is selected | Amorphous form                   | 50  | Solid State 1 |
| Aqueous Phase Solubility (mg/mL)                                                                                       | Crystalline (monohydrate)        | 1.8 | Solid State 2 |
|                                                                                                                        |                                  |     |               |
| Salt Limited Solubility                                                                                                | Formulated with 5.5 mg HPMC      |     |               |
| Particle Surface Solubility                                                                                            |                                  |     |               |
|                                                                                                                        |                                  |     |               |
| General Aqueous Phase Solubility Bile Micelle Mediated Solubility Supersaturation and Precipitation                    |                                  |     |               |
| Equation Solid State 1 Solid State 2                                                                                   |                                  |     |               |
| Solid State 2                                                                                                          |                                  |     |               |
| Solid State 2 can be used where a precipitate is a different solid state to the dosage form and/or where a             |                                  |     |               |
| Aqueous Phase Solubility (mg/mL)                                                                                       |                                  |     |               |
| Intrinsic Solubility (So)   User Input 0.0018  Predicted 0.456705                                                      |                                  |     |               |

### **Tacrolimus ASD** – Potential Impact of Crystallisation During Storage

| Formulation Type Transit Times Diffusion Layer Model Luminal Degrad                                                                                                            | dation                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Solid State 1<br>Model Two Solid States Fraction in Dose (%)<br>Solid State 1<br>30                                                                                            | Solid State 2<br>70                                                                                                   |
| General Aqueous Phase Solubility Bile Micelle Mediated Solubility Supersaturation and Precipitation                                                                            | Intrinsic Solubility, So (µg/mL)                                                                                      |
| Equation Solid State 1 Solid State 2                                                                                                                                           | Amorphous form 50 "Solid State 1"                                                                                     |
| Solid State 1                                                                                                                                                                  | Crystalline (monohydrate) 1.8 "Solid State 2"                                                                         |
| Solid State 1 is the Solid State of the Dosage Form unless a Dual Solid State Formulation is selected                                                                          | Formulated with 5.5 mg HPMC                                                                                           |
| Intrinsic Solubility (S <sub>o</sub> )  User Input 0.05 Predicted 0.456705 Salt Limited Solubility                                                                             | Stepwise Building of PBPK Model                                                                                       |
| Particle Surface Solubility                                                                                                                                                    | <ul> <li>IV data are available</li> </ul>                                                                             |
|                                                                                                                                                                                | <ul> <li>Very high, conc-dependent red blood cell binding</li> </ul>                                                  |
| General       Aqueous Phase Solubility       Bile Micelle Mediated Solubility       Supersaturation and Precipitation         Equation       Solid State 1       Solid State 2 | <ul> <li>Oral solution clinical study available to verify models prior to<br/>application to ASD modelling</li> </ul> |
| Solid State 2 can be used where a precipitate is a different solid state to the dosage form and/or where a                                                                     | <ul> <li>High first pass GUT metabolism, Fg ~ 0.4</li> </ul>                                                          |
| Aqueous Phase Solubility (mg/mL) Intrinsic Solubility (So)  User Input 0.0018 OPredicted 0.456705                                                                              | <ul> <li>Mechanistic dissolution model (DLM) applied</li> </ul>                                                       |

#### **HPMC Impact and Anticipated HPMC In Vivo Concentrations**





#### **HPMC Impact and Anticipated HPMC In Vivo Concentrations**



In Vitro Induction Time for Tacrolimus Crystallisation

*In vivo,* precipitation is not expected

PBPK Simulated In Vivo <u>HPMC</u> Concentrations – 5.5 mg HPMC, 240 mL drink



Mechanistic dissolution model with two solid states applied

#### PBPK Simulation Results 50 subjects HVs, NEC Mean Profiles

(A) Mean Values of Systemic concentration in blood of RV-Tacrolimus over Time



Degree of crystallinity has significant impact on simulated PK Mechanistic dissolution model with two solid states applied

Degree of crystallinity has significant impact on PK

PBPK Simulation Results 50 subjects HVs, NEC Mean Profiles



#### Alternative Approach for an Average Subject: Sensitivity Analysis on "Fraction"



Rapid assessment of potential impact of increasing degree of crystallinity



### **Tacrolimus VBE**

Mechanistic Dissolution Model with two solid states

T/R Ratio Ref -Fully amorphous form Test – a partially crystallised form

#### 2-way Crossover VBE evaluating the PK metrics C<sub>max</sub> and AUC<sub>0-t</sub> of 50 Healthy Volunteers



VBE performed in R in this example

Mechanistic modelling, in this case, removed the need for potentially complex *in vitro* dissolution experiments with an absorptive phase/component.

#### In Vivo Relevance of In Vitro Conditions: Tacrolimus BCS 2







Even with precipitation blocked, simulated *in vivo* luminal concentrations are very low compared to *in vitro* concentrations

High permeability drug ...

29



### **Excipient Binding Case Study**

Drug X – Simcyp Consortium Member (Pharma) Compound BCS 2

Low intrinsic solubility ( <1  $\mu$ g/mL), high  $P_{eff}$ , log $P_{ow}$  3 - 4 Low basic pKa

Precipitation risk

### **Cyclodextrin Binding Case Study**

Drug X – Simcyp Consortium Member (Pharma) Compound

BCS 2

Low intrinsic solubility ( <1  $\mu$ g/mL), high  $P_{eff}$ , log $P_{ow}$  3 - 4 Low basic pKa

Precipitation risk

Drug X was formulated with 8 g Cyclodextrin with the aim to increase solubility, reduce precipitation risk

Clinical study: AUC, Cmax reduced significantly, tmax increased significantly

### Explanation? PBPK Modelling ...



#### Substrate – Drug X

#### Inhibitor 1 – HP $\beta$ CD

| C | Dosing                           |                                                                               |                                                                   |                | sım##CYP      |
|---|----------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------|----------------|---------------|
|   | Substrate   Fasted  Oral  Dosin  | <ul> <li>○ Fed ▼</li> <li>○ Food Staggering</li> <li>g Dose (mg) ▼</li> </ul> | Inhibitor 1<br>Oral                                               | Dosing         | Dose (mg)     |
|   | ● Single Dose Start at 9:00 AM ■ | on day 1                                                                      | Single Dose Start at 9                                            | 9:00 AM        | on day 1      |
|   | O Multiple Dose Number of Doses  | 1 τ (h) 24<br>CV (%) 0                                                        | O Multiple Dose Number of Doses<br>Fluid intake with dose (mL) 2: | 1<br>50 CV (%) | τ (h) 12<br>0 |

Absorption Model: ADAM

Absorption Model: ADAM

#### Substrate – Drug X

#### Inhibitor 1 – HP $\beta$ CD

| Dosing                   |                               |                                                  |                                 |             | SIM           | ĊYP |
|--------------------------|-------------------------------|--------------------------------------------------|---------------------------------|-------------|---------------|-----|
| Substrate<br>Oral 🔹      | Fasted O Fed Dosing Dose (mg) | <ul> <li>Food Staggering</li> <li>100</li> </ul> | Inhibitor 1<br>Oral             | Dosing      | Dose (mg)     |     |
| Single Dose              | Start at 9:00 AM              | on day 1                                         | Single Dose     Start at        | AM I        | on day 1      |     |
| O Multiple Dose Number o | of Doses 1<br>250 CV (%) 0    | τ (h) 24                                         | O Multiple Dose Number of Doses | 1<br>CV (%) | τ (h) 12<br>0 |     |

Absorption Model: ADAM

#### Absorption Model: ADAM



#### Substrate (Drug X)

#### Permeability Model: MechPeff



UBL = unstirred boundary (mucus/water) layer, local pH buffered to narrow range

Pade et al., 2018 BDD

34

#### Permeability Model: MechPeff





In vitro solubility available (in house) over a range of HP $\beta$ CD concentrations





Drug X: Pred vs Obs Solubility at Various [HPBCD] pH 6.8: K1:1 Model 0.05 r = 0.949 x + 0.002Solubility (M) Solubility (M)  $R^2 = 0.98$ Dredicted 0.01 0 0 0.01 0.02 0.03 0.04 0.05 Exp. Solubility (M)

*In vitro* solubility available (in house) at a range of HP $\beta$ CD concentrations



1:1 binding

model fitted

the data well

constant

Simulations Predict that Binding to HP $\beta$ CD significantly reduces Cmax and AUC This could have been anticipated prior to the clinical study



Mean Profiles (100 simulated HVs)

ms. to be submitted by Simcyp Industrial Consortium Member



### **Time-Variant Effective Gut Wall Permeability**



Peff is dramatically decreased at peak  $\mbox{HP}\beta\mbox{CD}$  concentration

$$P_{UBL}(t) = D_{eff,UBL}(t) / UBL thickness$$

Flux across the UBL (mucus/water layer is increased

$$\begin{split} D_{eff,UBL}(t) \\ &= f_{ionised,UBL}(t) \cdot D_{ionised} \\ &+ f_{neutral,UBL}(t) \cdot D_{neutral} \\ &+ f_{micelle,UBL}(t) \cdot D_{micelle} \\ &+ f_{excip,UBL}(t) \cdot D_{excip\_eff} \end{split}$$

#### Free fraction decreases significantly

this is the dominant effect of CD binding in this example ...
model could be applied to other excipients

#### **Evidence for Cyclodextrin Binding Impact Upon Peff**



pubs.acs.org/molecularpharmaceutics

Article

Toward Successful Cyclodextrin Based Solubility-Enabling Formulations for Oral Delivery of Lipophilic Drugs: Solubility– Permeability Trade-Off, Biorelevant Dissolution, and the Unstirred Water Layer

Noa Fine-Shamir,<sup>‡</sup> Avital Beig,<sup>‡</sup> Moran Zur,<sup>‡</sup> David Lindley,<sup>†</sup> Jonathan M. Miller,<sup>†,§</sup> and Arik Dahan<sup>\*,‡</sup>

#### In Vivo Rat Perfusion Studies: Danazol Peff vs HPβCD Concentration



Fine-Shamir et al 2017 Mol Pharm 14:2138



### **Automated Sensitivity Analysis on CD Dose**



### **Estimation of Optimal Excipient Amount in a Formulation**

#### **Estimation of Optimal Excipient "Dose"**

Too much CD can inhibit absorption, very low free fraction Too little CD, insufficient solubilisation

#### In Vitro: Acetazolamide Flux vs HPβCD Concentration



Loftsson et al 2011 J Pharm Pharmacol 63:1119



### **Estimation of Optimal Excipient Amount in a Formulation**

#### **Estimation of Optimal Excipient "Dose"**

Too much CD can inhibit absorption, very low free fraction Too little CD, insufficient solubilisation

#### In Vitro: Acetazolamide Flux vs HPβCD Concentration



Loftsson et al 2011 J Pharm Pharmacol 63:1119

#### Sensitivity Analysis on CD Dose: Hypothetical Drug



### V19 Additions: Salt Model and Surface Solubility

1. Tools for Handling Salts of API and Salt limited Solubility (Ksp Model)

#### 2. Surface Solubility Models for acids, bases, ampholytes including Salts

Particle (surface) microenvironment pH and solubility



### V19 Additions: Salt Model

- 1. Tools for Handling Salts of API and Salt limited Solubility (Ksp Model)
  - Drug product
    - Formulated as a salt (~50% of top 200 US prescription drugs Prohotsky 2012)
    - Formulated as free acid/base/ampholyte with solubility limited by endogenous ions
  - Common ion effect (e.g., HCl salt drug product + endogenous chloride ion)



• Precipitation to salt or free acid/base



### V19 Additions: Salt Model

#### 1. Tools for Handling Salts of API and Salt limited Solubility (Ksp Model)

- Drug product formulated as a salt (~50% of top 200 US prescription drugs Prohotsky 2012)
- Free acid/base/ampholyte API with solubility limited by endogenous ions
- Common ion effect (e.g., HCl salt drug product + endogenous chloride ion)
- Precipitation to salt or free acid/base
- Disproportionation during storage (e.g., 80% salt, 20% free form)





### V19 Additions: Salt Model

#### 1. Tools for Handling Salts of API and Salt limited Solubility (Ksp Model)

- Drug product formulated as a salt (~50% of top 200 US prescription drugs Prohotsky 2012)
- Free acid/base/ampholyte API with solubility limited by endogenous ions
- Common ion effect (e.g., HCl salt drug product + endogenous chloride ion)
- Precipitation to salt or free acid/base
- Disproportionation during storage (e.g., 80% salt, 20% free form)
- Ksp limited solubility



Haloperidol Experimental Solubility-pH Profile (basic pKa ~8.5)



1. Advantages of Surface pH Model: Haloperidol Free Base (Non-Salt)



In vitro data: Li et al., 2005 Pharm Res



1. Advantages of Surface pH Model: Haloperidol Free Base (Non-Salt)



**CERTARA** 

2. Advantages of Salt + Salt Surface pH Model: <u>Haloperidol Salt</u>



In vitro data: Li et al., 2005 Pharm Res



2. Salt + Salt Surface pH Model: <u>Haloperidol Salt</u>



In vitro data: Li et al., 2005 Pharm Res

CERTARA

2. Salt + Salt Surface pH Model: <u>Haloperidol Salt</u>



In vitro data: Li et al., 2005 Pharm Res

CERTARA

### Summary

Recent Additions New Models Tools – "Wrappers" – IVIVC, VBE GSA - Global Sensitivity Analysis Coupling in vitro experiments with PBPK Modelling

Case Studies / Examples

Cyclodextrin (Excipient Binding/Solubilisation/Permeability interplay) Tacrolimus (VBE, formulation BE)

Salt and Surface pH Models



#### Acknowledgments

Funding Simcyp Consortium



FDA Grant 1U01FD005865

#### Team





VenkateshTeia.Banala@certara.com



David Turner David.Turner@certara.com



#### Disclaimer

"The views expressed in this presentation are those of the author and should not be construed to represent the U.S. Food and Drug Administration (FDA)'s views or policies. The mention of commercial products, their sources, or their use in connection with material reported herein is not to be construed as either an actual or implied endorsement of such products by the FDA."

Note: The Simcyp Simulator is freely available, following completion of the relevant workshop, to approved members of academic institutions and other not-for-profit organizations for research and teaching purposes.

This webinar, upcoming and past webinars: https://www.certara.com/webinars/

Upcoming Workshops: https://www.certara.com/resource-library/simcyp-workshops/?ap=PBPK



# **Questions?**



### **Extra Slides**



#### The Multi-compartment Gut Wall ADAM (M-ADAM) Model





### **Applying Knowledge Gained from In Vitro Experiments**

Obtain Model settings for PBPK simulations?





Mechanistic modelling, in this case, removed the need for potentially complex *in vitro* dissolution experiments with an absorptive phase/component.

### Danirixin Hydrobromide (DNX HBr) Case Study

Compared to "Free" API forms salts can provide

- Dissolution rate advantage
- "Solubility" advantage provided there is not precipitation to the free form (DNX is an ampholyte >99% ionised in physiological pH range)

#### pH Solubility Profiles of Free Ampholyte DNX Measured at 3 Time Points up to 24 h





Solubility at given time and pH

NB It is assumed that the reported pH values are the final pH values

© Copyright 2020 Certara, L.P. All rights reserved.

Refs: 1) GSK patent WO 2015/071235 Al 2) Bloomer et al., 2017 60 CERTARA<sup>O</sup>



#### **Tacrolimus** In Vitro Dissolution Data

What (maximum) luminal concentrations of tacrolimus do we expect in vivo?

Run simulations with precipitation prevented – this can give estimates of maximum conc.

In Vitro data Purohit et al, 2018

CERTARA

#### LUA Scripting Tools – Custom Models – Research Tool

```
💮 Substrate: PD Basic 1
                                                                          ×
                                                                      _
File Edit Options Tools Functions
25
26 - function popSimSetup(...)
27
        --set the number of differential equations used in the model
28
        sc:setNUserOdes(27);
29
        -- assign names to user state variables (for output on "PD Custome ODE" WS
30
        local SEG names = { "Stomach", "Duodenum", "Jejunum 1", "Jejunum 2", "Ileum 1
31
        local su nname = {};
32
        for i=1,9 do
33
            su nname[i] = tostring("Vfood " ..SEG names[i] .." (mL)");
34
            sc:setUserStateName(i,su nname[i]);
35
        end
36
        for i=10,18 do
37
            su nname[i] = tostring("Fdil " ...SEG names[i-9]);
38
            sc:setUserStateName(i,su nname[i]);
39
            --sc:setUserStateName(index, name)
40
        end
41
        for i=19,27 do
42
            su nname[i] = tostring("Viscosity " ..SEG names[i-18] .." (CP)");
43
            sc:setUserStateName(i,su nname[i]);
44
            --sc:setUserStateName(index, name)
45
        end
46
    end
47 function individualSetup(...)
        --get transit rate constants, ids from AB 9/4/2019 v18
48
49
        -- idSITransitTime, -- idGastricET, -- idColonTransitTime
50
        -- idFluidIntakeSub, idFluidIntakeInh1 - these two NOT available in v18
51
        MRT stomach = sc:GetIndividualValueByID("idGastricET");
52
        kt seg[1] = 1 / MRT stomach;
53
        MRT SI = sc:GetIndividualValueByID("idSITransitTime");
54
        --assign kt SI
55
        for i=2,8 do
56
            kt_seg[i] = 1 / (MRT_SI * SI_fractions[i-1]);
57
        end
58
        MRT Colon = sc:GetIndividualValueByID("idColonTransitTime")
59
        kt seg[9] = 1 / MRT Colon;
60
    end
61 - function compoundSetup(...) -- this assigns values to array P
62
        -- assign some parameters to P[]
63
        sc:setParameter(1, 531) --Vfood initial stomach
64
        sc:setParameter(2, 0) --Vfood initial duo
65
        sc:setParameter(3, 0.1) --Vfood base line or minimum global
66
        sc:setParameterName(1, "Vfood init");
67
        sc:setParameterName(2, "Vfood initial duo");
68
        sc:setParameterName(3, "Vfood base line or minimum global");
69 – end
70
    --function individualCompoundSetup(...)
71
```



### Danirixin Hydrobromide (DNX HBr) Case Study

Compared to "Free" API forms salts can provide

- Dissolution rate advantage
- "Solubility" advantage provided there is not precipitation to the free form (DNX is an ampholyte >99% ionised in physiological pH range)

#### pH Solubility Profiles of Free Ampholyte DNX and DNX HBr Salt Measured at 3 Time Points up to 24 h



NB It is assumed that the stated pH values are the final pH values



Solubility at given time and pH

#### The HBr salt

- Creates solutions that are supersaturated with respect free ampholyte
- That is quite stable up to 24 h (very stable at pH 4)

Refs: 1) GSK patent WO 2015/071235 Al 2) Bloomer et al., 2017

#### Salt Model Danirixin Case Study



### Danirixin Hydrobromide (DNX HBr) Case Study

Compared to "Free" API forms salts can provide

- Dissolution rate advantage
- "Solubility" advantage provided there is not precipitation to the free form (DNX is an ampholyte >99% ionised in physiological pH range)

#### pH Solubility Profiles of Free Ampholyte DNX and DNX HBr Salt Measured at 3 Time Points up to 24 h



#### NB It is assumed that the stated pH values are the final pH values

XXX

Solubility at given time and pH

#### The HBr salt

- Creates solutions that are supersaturated with respect free ampholyte
- That is quite stable up to 24 h (very stable at pH 4)

Refs: 1) GSK patent WO 2015/071235 Al 2) Bloomer et al., 2017 65

#### **VBE Covariate Analysis – example**

Reference – Amorphous (100%)

TestAmorphous (90%) + Crystalline (10%)



Each marker point relates to a single subject

#### Residence time in the gut lumen is also a key covariate

Simulation

Clinical Example: Tween 80 (T80) was used to solubilise an extremely lipophilic BCS 2 compound, low basic pKa – Drug "Y" S<sub>o</sub>, API alone <10 ng/mL (predicted) **Figure 1:** Aqueous phase equilibrium T80 self-associates to form micelles (CMC 0.012 mM)

Available In Vitro Data in the Presence of Tween 80

solubility of Drug Y in the presence of 1.7 mM Tween 80 (no bile salts).





pН

Analogous data following the same pattern were available for a TPGS formulation and a "Quotient" Formulation containing another solubiliser

$$S_{Tot}(t) = S_0 \cdot S_{0_{scalar}}(t) \cdot \left(1 + \frac{[BS](t)}{C_{H_2O}} \cdot K_{m:w,unionised}(t)\right)$$

$$+S_i(t)\cdot\left(1+\frac{[BS](t)}{c_{H_2O}}\cdot K_{m;w,ionised}(t)\right)+S_{bound,excip}(t)$$

Equation 1

Diffusion coefficients Luminal fluids – dissolution UBL/Mucus/water – permeability (ADAM/MechPeff model or M-ADAM only)

Free concentration at UBLmembrane interface Identifiability of *Km:w* values? Please do measurements in more than 2 biorelevant media!

$$P_{eff} = \left( \left( \left( P_{trans,0} \cdot f_{neutral,pH} + P_{para} \right) \cdot ACC \cdot MVE \cdot f_{u,UBL} \right)^{-1} + \left( P_{UBL} \right)^{-1} \right)^{-1} \cdot FE_{p}$$

$$P_{UBL} = \frac{D_{eff,UBL}}{h_{eff,UBL}}$$

© Copyright 2020 Certara, L.P. All rights reserved.