

Exploiting Dual Solid State PBPK Tools to Assess the Bio(in)equivalence of Tacrolimus Amorphous Formulations with Various Degrees of Crystallization Arising During Storage

- September 11<sup>th</sup> 2019
  - **David Turner**
  - IAPC-8, Split, Croatia

## Outline

- Introduction
- Population PBPK Modelling / Mechanistic Modelling
- Interpreting & modelling of in vitro experiments
- Tacrolimus case study, towards virtual bioequivalence
- Summary



## Population PBPK Modelling - Separation of system/drug data

| Systems<br>Data                                      | Trial<br>Design                                                                                        |      | Drug<br>Data |  |  |
|------------------------------------------------------|--------------------------------------------------------------------------------------------------------|------|--------------|--|--|
|                                                      | Dose<br>Administration route<br>Frequency<br>Co-administered drugs<br>Populations<br>No of male/female |      |              |  |  |
|                                                      | Mechanistic IVIVE-linked PBPK mod                                                                      | lels |              |  |  |
|                                                      |                                                                                                        |      |              |  |  |
| Prediction of drug PK (PD) in population of interest |                                                                                                        |      |              |  |  |

© Copyright 2019 Certara, LP. All rights reserved.

## Population Variability: "Average" Subject vs Population Simulation

In Vivo Individual Plasma PK Profiles: An Extended Release Formulation



#### **ADAM Model – Dissolution, Gut Wall Enzymes and Transporters**



## (Some of the) Gut-Related Parameters with BSV in Simcyp



BSV Between subject variability



## Small Intestine: Luminal Water Volumes: Variability





## GIT Variability: Dipyridamole Example



Contents lists available at ScienceDirect

Journal of Pharmaceutical Sciences

journal homepage: www.jpharmsci.org

Pharmacokinetics, Pharmacodynamics and Drug Transport and Metabolism

Biopharmaceutic *IVIVE*—Mechanistic Modeling of Single- and Two-Phase *In Vitro* Experiments to Obtain Drug-Specific Parameters for Incorporation Into PBPK Models

Shriram M. Pathak<sup>1,\*</sup>, Kerstin Julia Schaefer<sup>2</sup>, Masoud Jamei<sup>1</sup>, David B. Turner<sup>1</sup>

<sup>1</sup> Certara UK Limited, Simcyp Division, Level 2-Acero, Sheffield, S1 2BJ, UK

<sup>2</sup> Pharmaceutical Development, Boehringer-Ingelheim Pharma GmbH & Co. KG, Germany





**MAXIMAL PRECIPITATED FRACTION (%)** 

# **Recently Added Tools/Models**



## Multi-compartment Gut Wall ADAM (M-ADAM) Model



# Handling Dissolution with PBPK Models



## **Predicting Oral Drug Absorption of Drug Products: Current Status**

Sensitivity to physiological regional differences and BSV or WSV\*.

#### High

Semi-mechanistic dissolution models; e.g., Noyes-Whitney or the extended Wang-Flanagan . Semi-mechanistic dissolution models: lumped parameters /

models; e.g., Z-factor.

Empirical models; e.g., Weibull function.

# Low High

Applicability to complex formulations within the current models

#### \*BSV, WSV – Between, Within Subject Variability

Low

# **Running Theme**

- PBPK Absorption modelling
  - Informed by *in vitro* experiments
  - Informed by <u>modelling of</u> *in vitro* experiments



## Accounting for Hydrodynamics: Effective Diffusion Layer Thickness, heff



CERTA

## Examples of Application of PBPK Modelling to Supersaturating Drugs

| Mod<br>Mod<br>Mech<br>Extra<br>Shriran<br>and Ma  | el-Based Ar<br>nanistic Ora<br>polation Pa<br>n M. Pathak, *†©<br>asoud Jamei <sup>†</sup> | nalysis of<br>Absorption<br>Aaron Ruff,*               | Biophar<br>tion Mod<br>e Using I<br>Edmund S. F             | Article<br>pubs.acs.org/molecularpharmaceutics<br>maceutic Experiments To Improve<br>eling: An Integrated <i>in Vitro in Vivo</i><br>Ketoconazole as a Model Drug<br>Kostewicz, <sup>‡</sup> Nikunjkumar Patel, <sup>†</sup> David B. Turner, <sup>†</sup> |                                       | All three PBPK models<br>informed / parameterised<br>from modelling of <i>in vitro</i><br>experiments                                         |
|---------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| <sup>†</sup> Simcy<br><sup>‡</sup> Depai<br>60438 | ELSEVIER<br>Pharmacokine<br>Biopharma<br>Two-Phase<br>Parameter                            | tics, Pharma<br>Aceutic IV<br>e In Vitro<br>s for Inco | Jour<br>ja<br>codynamics<br>/IVE—Me<br>Experin<br>orporatic | Contents lists available at ScienceDirect<br>nal of Pharmaceutical Sciences<br>ournal homepage: www.jpharmsci.org<br>and Drug Transport and Metabolism<br>echanistic Modeling of Single- and<br>nents to Obtain Drug-Specific<br>on Into PBPK Models       |                                       | Simple precipitation models<br>based on a critical<br>supersaturation ratio and<br>precipitation rate constant(s)<br><i>can</i> be sufficient |
| l                                                 | Shriram M. P                                                                               | <sup>athak 1, *</sup> , K<br>GUIAT<br>ITMACE           | Cerstin Julia                                               | Article<br>In Silico Modeling Approach for the Even<br>Dissolution, Supersaturation and Preci<br>Bart Hens, Shriram M. Pathak, Amitava Mitra, Nikunjkumar F<br>Jamei, Joachim Brouwers, Patrick Augustijns, and David B                                    | aluat<br>ipitat<br>Patel, B<br>Turner | tion of Gastrointestinal<br>tion of <u>Posaconazole</u><br>to Liu, <u>Sanjaykumar Patel, Masoud</u>                                           |

Sequential Modelling of In Vitro Experiments: Ketoconazole



# An Application: Towards Virtual Bioequivalence: Tacrolimus ASD

- Tacrolimus was first approved in 1994 Innovator Product Prograf<sup>®</sup> Astellas Pharma
- Tacrolimus is poorly water-soluble commercial formulations are Amorphous Solid Dispersions (ASD)

#### US FDA approved tacrolimus brand and generic products

| FDA<br>Application<br>number | Therapeutic<br>equivalence<br>code | Label              | Dosage<br>form and<br>route | Strength                              | Rx           | Applicant             |
|------------------------------|------------------------------------|--------------------|-----------------------------|---------------------------------------|--------------|-----------------------|
| Prograf,<br>NDA #<br>050708  | AB                                 | Label<br>Available | Capsule;<br>oral            | Equivalent<br>0.1, 1 and<br>5 mg base | Prescription | Astellas              |
| Prograf<br>NDA #<br>050709   | AB                                 | Label<br>Available | Injectable;<br>Injection    | Equivalent<br>5mg<br>Base/ml          | Prescription | Astellas              |
| ANDA #<br>065461             | AB                                 | Label<br>Available | Capsule;<br>oral            | Equivalent<br>0.1, 1 and<br>5 mg base | Prescription | Sandoz                |
| ANDA #<br>090402             | AB                                 | Not<br>Available   | Capsule;<br>oral            | Equivalent<br>5mg base                | Prescription | Watson<br>labs        |
| ANDA #<br>090509             | AB                                 | Not<br>Available   | Capsule;<br>oral            | Equivalent<br>0.1, 1 and<br>5 mg base | Prescription | Dr Reddys<br>Labs Ltd |
| ANDA #<br>090596             | AB                                 | Not<br>Available   | Capsule;<br>oral            | Equivalent<br>0.1, 1 and<br>5 mg base | Prescription | Mylan                 |
| ANDA #<br>090802             | AB                                 | Not<br>Available   | Capsule;<br>oral            | Equivalent<br>0.1, 1 and<br>5 mg base | Prescription | Panacea<br>biotec ltd |
| ANDA #<br>091195             | AB                                 | Not<br>Available   | Capsule;<br>oral            | Equivalent<br>0.1, 1 and<br>5 mg base | Prescription | Accord<br>Healthcare  |

#### Rahman 2013 Tacrolimus: Effectiveness, Safety and Drug Interactions

| Manufacturer | Powder weight<br>(mg) | Tacrolimus<br>(mg) | HPMC<br>(mg) | Croscarmellose<br>na<br>(mg) | Lactose and other minor excipients (mg) |
|--------------|-----------------------|--------------------|--------------|------------------------------|-----------------------------------------|
| Astellas     | 138(1)                | 5                  | 5.3(0.6)     | 5.8                          | 122                                     |
| Mylan        | 100(1)                | 5                  | 4.8 (0.1)    | 5.5                          | 84                                      |
| Dr. Reddy's  | 139(1)                | 5                  | 5.2(0.8)     | 8.2                          | 121                                     |
| Accord       | 132 (2)               | 5                  | 5.5(0.1)     | 21.5                         | 100                                     |
| Panacea      | 4  ( )                | 5                  | 5.4(0.8)     | 4.1                          | 126                                     |
| Sandoz       | 242 (2)               | 5                  | 4.9(0.4)     | 6                            | 226                                     |



# Crystallization of Tacrolimus in Generic Drug Products

Crystallisation Kinetics: Accord Powder after Capsule Storage at 40 C / 75% RH



#### Accord

- Susceptible to crystallization under stress conditions
- Inter-batch differences in the extent of crystallisation

# Q: Does (the extent of) crystallisation have implications for Bioequivalence?



#### In Vitro Dissolution of Tacrolimus with Various Degrees of Crystallisation



## Virtual Bioequivalence Analysis: Previous 3rd Party Study

Direct Input of In Vitro Dissolution Profiles into a PBPK Model

Purohit et al, J Pharm Sci 107 (2018) 1330

There is no absorptive phase / route in the in vitro experiments

Run the PBPK simulation,

Compare "Test" (partially crystallised) to fully amorphous "Reference" via simulated Cmax and AUC (Two-way crossover)



A More Mechanistic Approach: Simulation Tools for Handling Two Solid States

![](_page_21_Figure_1.jpeg)

So – intrinsic solubility; PSD – particle size distribution

CERTARA

## **PBPK Simulations: Input Parameters**

| MWt 804g/mol; logPow 3.3; Neutral          | Vss (L/kg) (Minimal  |       |  |
|--------------------------------------------|----------------------|-------|--|
| Plasma fu 0.013 (main binding protein HSA) | PBPK)                | 17.1  |  |
|                                            | Volume [Vsac] (L/kg) | 1.43  |  |
| BP Ratio: Conc. dependent 5 - 80           | SAC kin (1/h)        | 0.314 |  |
|                                            | SAC kout (1/h)       | 0.048 |  |

![](_page_22_Figure_2.jpeg)

Renal Clearance 0.048 L/h

CYP3A4/3A5 substrate with Vmax and Km for two pathways

High first pass GUT metabolism

Fg~0.4

![](_page_22_Picture_9.jpeg)

## **PBPK Simulations: Gut Parameters**

| P <sub>eff,man</sub> (10 <sup>-4</sup> cm/s)          | 6.33                        |  |  |
|-------------------------------------------------------|-----------------------------|--|--|
| Formulation                                           | Immediate Release           |  |  |
| Dissolution Model                                     | Diffusion Layer (DLM, W&F)  |  |  |
| Particle Handling Model                               | Particle Population Balance |  |  |
| Intrinsic Solubility – Amorphous<br>(Solid State 1)   | 50 μg/mL                    |  |  |
| Intrinsic Solubility – Crystalline<br>(Solid State 2) | 1.8 μg/mL                   |  |  |
| Particle radius (µm)                                  | 10 (sensitivity analysis)   |  |  |

Oral dosing (5 mg) simulations

- No precipitation to crystalline form (initial assumption)
- Amorphous solubility limit cannot be exceeded
  - IF C<sub>bulk,unbound</sub> > So,amorphous THEN

Immediate, rapid precipitation to amorphous material (solid? LLPS droplets?)

![](_page_23_Picture_9.jpeg)

## HPMC Impact and Anticipated HPMC In Vivo Concentrations

![](_page_24_Figure_1.jpeg)

Induction Time for Tacrolimus Crystallisation

PBPK Simulated In Vivo <u>HPMC</u> Concentrations – 5.5 mg HPMC, 240 mL drink

![](_page_24_Figure_4.jpeg)

## Initial Verification of the Tacrolimus File – Moller et al 1998

![](_page_25_Figure_1.jpeg)

![](_page_25_Picture_4.jpeg)

Implication of Crystallization of Tacrolimus in Generic Drug Products on BE

2-way Crossover VBE evaluating the PK metrics  $C_{max}$  and  $AUC_{0-t}$  of 50 Healthy Volunteers

![](_page_26_Figure_2.jpeg)

Mean Profiles for 50 simulated subjects

Note – Intra-occasion (within subject) variability was not included in the current BE assessment (future work)

(B) Test/Reference (T/R) Ratios

20

40

"Test" - partially crystallised in "dose"

"Reference" - fully amorphous

60

27

"Test" Product % Crystallinity

80

120

80

40

0

0

T/R

Ratio

![](_page_26_Picture_8.jpeg)

AUC

Cmax

## In Vivo vs. In Vitro Concentrations

![](_page_27_Figure_1.jpeg)

![](_page_27_Figure_2.jpeg)

28

#### Simulated In Vivo Dissolution

![](_page_28_Figure_2.jpeg)

# BE Comparison – Mechanistic DLM vs. Input Dissolution Profile

![](_page_29_Figure_1.jpeg)

## Exploration of Co-variates – CYP3A4/5 Jejunal Abundance

## Simulation – Reference – Amorphous (100%)

Test – Amorphous (90%) + Crystalline (10%)

![](_page_30_Figure_3.jpeg)

Each marker point relates to a single subject

#### Residence time in the gut lumen is also a key covariate

## Tacrolimus: 90% Amorphous: 10% Crystalline Simulations

![](_page_31_Figure_1.jpeg)

![](_page_31_Figure_2.jpeg)

fa cannot exceed cumulative fraction dissolved

#### Further work tacrolimus

- Metastable concentrations observed in vitro ?
- Add in WSV, further analysis of covariates related to bioinequivalence
- Obtain clinical results to verify

Mechanistic PBPK Models

Can help interpret in vitro data and translate it to in vivo Can capture regional and inter-individual differences in physiology Can extrapolate to different physiologies (paediatric, disease, ethnic) Can be used to define safe spaces for dissolution Can be used to perform Virtual Bioequivalence analyses

PBPK modelling has come a long way ...

... and has a long way to go ... formulation, multiple excipients ...

![](_page_32_Picture_11.jpeg)

## **Acknowledgements**

#### Certara-Simcyp

Sumit Arora (Sumit.Arora@Certara.com)

Siri Kalyan Chirumamilla (Sirikalyan.Chirumamilla@Certara.com)

Ali Nimavardi (<u>Ali.Nimavardi@Certara.com</u>)

Nikunjkumar Patel (Nikunjkumar.Patel@Certara.com)

Konstantinos Stamatopoulos (Konstantinos.Stamatopoulos@Certara.com)

Venkatesh Teja Banala (Venkatesh Teja. Banala@Certara.com)

Masoud Jamei (<u>Masoud.Jamei@certara.com</u>)

![](_page_33_Picture_9.jpeg)

FDA Grant 1U01FD005865 NIH-003-ABSORPTION GRANT

# KU LEUVEN

![](_page_33_Picture_14.jpeg)

# **Questions?**

![](_page_34_Picture_1.jpeg)

## Regional fa and Fraction Metabolised (Population Representative)

![](_page_35_Figure_1.jpeg)

CERTARA

# Bioequivalence is Simple ;O)

- Take the ratio between the geometric means of PK parameters for two formulations
- Calculate a 90% confidence interval around the geometric mean
- Does this fall within 0.8 1.25?
  - The limit may be scaled for highly variable or narrow therapeutic index drugs
- What if it it's undecided?

![](_page_36_Figure_6.jpeg)

- As you know, when you increase the sample size, the confidence intervals get smaller
- Sample size calculations can be used to estimate the number needed, for a particular power
- Overpowering a study is frowned upon ("forced bioequivalence")
- 80% power is typical (note that this means 1 in 5 studies will fail to show bioequivalence just by chance)

![](_page_36_Picture_11.jpeg)