

#### Physiologically-based pharmacokinetic modeling to support generic ophthalmic product development and regulatory decision making

SBIA 2021: Advancing Generic Drug Development: Translating Science to Approval Day 1, Session 3: Complex Injectable, Ophthalmic and Otic Products Pt. 2

#### Mingliang Tan, Ph.D.

Staff Fellow Division of Quantitative Methods and Modeling, Office of Research and Standards, Office of Generic Drugs CDER | U.S. FDA

September 21, 2021

# **Learning Objectives**



- Recognize approaches to demonstrate bioequivalence (BE) for ophthalmic generics
- Explain challenges in developing and assessing ophthalmic generics
- Utilize physiologically-based pharmacokinetic (PBPK) modeling to advance the development and approval of ophthalmic generics
- Narrow down the knowledge gaps through research projects

## **Topical Ophthalmic Drug Products**

FDA

- Very successful in approving generic ophthalmic solution products
- Few to no approvals for complex ophthalmic generics since 1984
  - o Suspensions
  - o Ointments
  - o Emulsions

www.fda.gov

| Slide courtesy of Darby Kozak, modified |
|-----------------------------------------|
|-----------------------------------------|

| Dosage<br>Form<br>(2018 sales) | Number of<br>Reference (RLD)<br>products in USA <sup>1</sup> | % of RLDs that<br>have an approved<br>generic <sup>2</sup> |  |  |  |
|--------------------------------|--------------------------------------------------------------|------------------------------------------------------------|--|--|--|
| Solutions<br>(\$17.9B)         | ~111                                                         | 55%                                                        |  |  |  |
| Suspension<br>(\$1.9B)         | ~22                                                          | 23% <sup>3</sup>                                           |  |  |  |
| Emulsion<br>(\$4.4B)           | 4                                                            | 0                                                          |  |  |  |
| Ointment<br>(\$730M)           | ~154                                                         | 30% <sup>3</sup>                                           |  |  |  |

1. Includes RLD products that are no longer marketed but that can still serve as a reference drug

- 2. Although approved, a generic may not be currently marketed
- 3. Most (>75%) were approved pre-Hatch-Waxman (1984)
- 4. A number of ointment NDAs have been discontinued, but may be re-designated as RLD by industry request

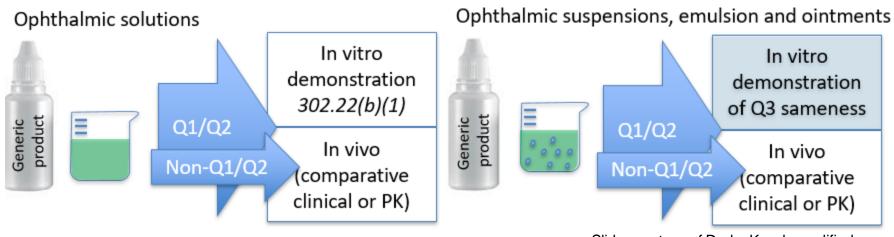
Luke M and Kozak D, Journal of Ocular Pharmacology and Therapeutics 37, 157 (2021)

### **BE Approaches for Ophthalmic Generics**

FDA

Multiple options to demonstrate BE

o In vivo local pharmacokinetic (PK) studies


o In vivo pharmacodynamic (PD) studies

Comparative clinical endpoint (CCE) studies

 $\circ$  In vitro studies

Each BE option has inherent benefits, risks, and limitations

# **BE Approaches for Ophthalmic Generics** Different dosage forms



Slide courtesy of Darby Kozak, modified

Product-specific guidance (PSG) available, Pre-ANDA meetings, Controlled Correspondences (CC)

# **Challenges in Ophthalmic Generics**



- Ophthalmic drugs are locally acting and drug measurements in local eye tissues are often impractical, unethical, and cost-prohibitive
- Local PK studies
  - o Limited tissue available such as aqueous humor
  - o Sparse sampling with high variability
  - Large sample population required
- Comparative clinical endpoint studies
  - o Confounded by patient disease severity
  - Variability in measuring efficacy

## Why PBPK Modeling?

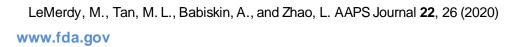


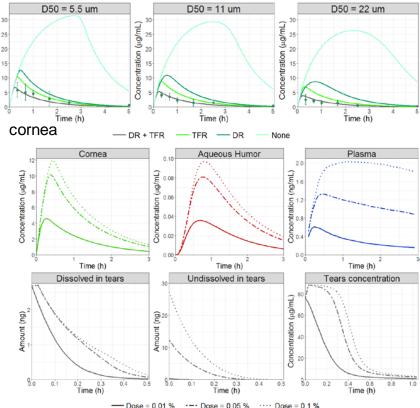
- Integrate physiology, drug/drug product properties, existing in vitro and in vivo data
- Predict local PK in eye tissues and PD
- Extrapolate to human from preclinical species
- Simulate virtual BE in lieu of conducting a PD/CE BE study?

## **PBPK-Related Ophthalmic Research**

- Internal Research
  - Perform FDA internal research to meet the regulatory scientific needs
- External Research
  - Funding Opportunity Announcement (FOA): Grants
  - Broad Agency Announcement (BAA): Contracts

https://www.fda.gov/drugs/generic-drugs/generic-drug-research-collaborationopportunities


## **Ophthalmic Suspensions**


**Purpose**: Use verified rabbit OCAT<sup>™</sup> PBPK model to study formulation effect on exposure

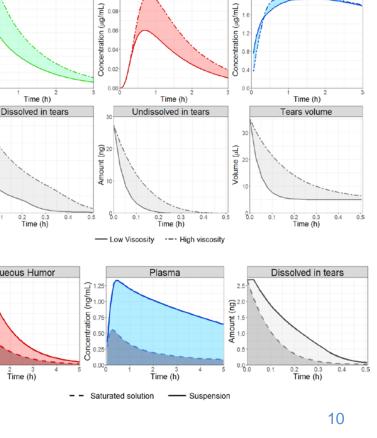
(hg/mL)

Concentration

- Tears dynamic impact on elimination following the administration of three suspensions of Dex 0.1% with differing particle size
- Non-linearity of PK: simulated at three different strengths: 0.01%, 0.05% and 0.1%
  - o Ocular absorption and distribution
  - o Plasma exposure
  - Drug dissolved and undissolved amounts in the tear








## **Ophthalmic Suspensions**

- Role of viscosity: simulated two suspension formulations of Dex 0.1% with different viscosities
  - Concentrations in the cornea, aqueous humor, and Ο plasma
  - Tear volume  $\circ$
  - Dissolved and undissolved drug amount in the Ο tears
- Suspension and solution formulation effect on exposure

How much does the drug in the solution contribute to the exposure relative to the total drug in solution and suspension formulations?

LeMerdy, M., Tan, M. L., Babiskin, A., and Zhao, L. AAPS Journal 22, 26 (2020) www.fda.gov



Aqueous Humor

F

Time (h)

Time (h)

Aqueous Humor

Time (h)

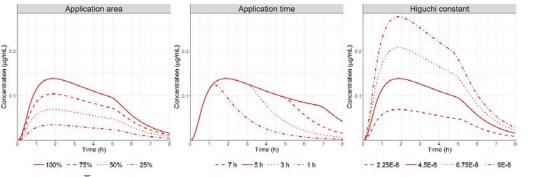
(mount (ng)

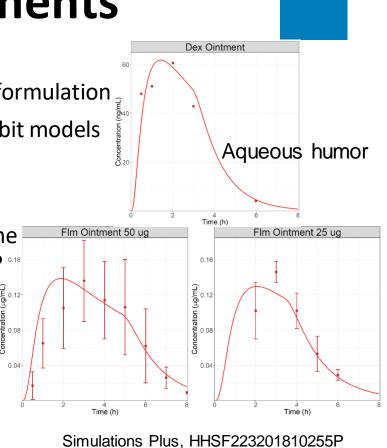
80 0.1 0.2 0.3

0.08

U 0.06

0.04-


0.02


FDA

Plasma

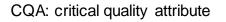
## **Ophthalmic Ointments**

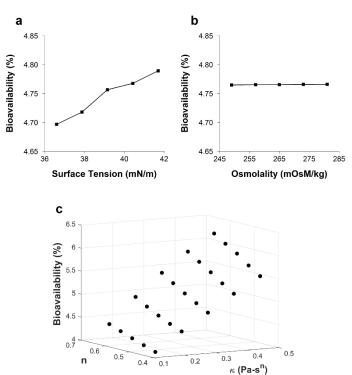
- Expanded OCAT<sup>™</sup> model to include ocular ointment formulation
- Dexamethasone and fluorometholone ointment rabbit models
- Sensitivity of application surface area, application time, and the Higuchi release constant
- Higuchi release constant most significantly impact the ocular exposure and Cmax, biopredictive from IVRT? <sup>116</sup>



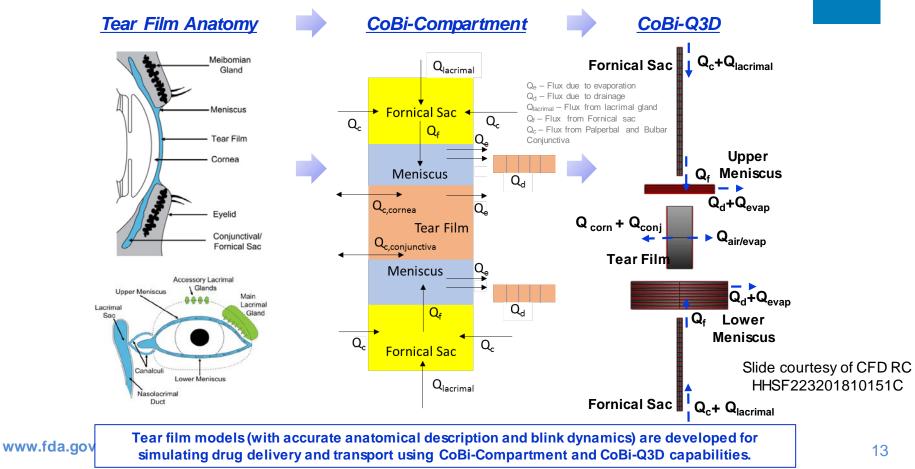


Le Merdy M, Spires J, Viera Lukacova V, Tan M L, Babiskin A, Xu X, Zhao L, Bolger M, Pharm Res 37, 245 (2020)


Concer


# **Cyclosporine Emulsion Modeling**

FDA


Purpose: impact of emulsion CQAs on product performance

- Two internally-built models:
  - Physics/fluids-based approach to modeling tear film breakup time (TBUT)
  - Compartmental-based approach to predict bioavailability
- Studied impact of surface tension, osmolality, and power law viscosity on conjunctival bioavailability (figure at right) and TBUT
- Viscosity had the greatest influence on both outcomes





#### **Ocular Tear Films Models**



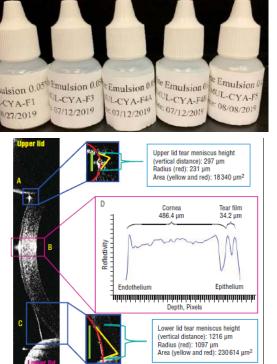
## Measurement Wang et al, Arch Ophthalmol, 126, 619 (2008)

FDA

#### **Cyclosporine Emulsion Model Validation**

Rabbit Tear Film Measurements to verify the model

Internal collaboration with OTR


Five formulations with the desired globule sizes and viscosities were manufactured.

**External collaboration with Absorption** Systems (IDIQ 75F40119D10024)

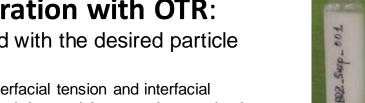
Optical coherence tomography to measure tear film and tear film menisci thickness in rabbits.

- Instillation of cyclosporine ophthalmic emulsion
- Already have human data from Wang et al. (2008)

Model validation of previously developed rabbit model



Tear Film Thickness and Tear Meniscus


## **Ocular PBPK-PD Model Development**

**Purpose**: to relate the ophthalmic suspension formulation changes to PD effect

#### Internal collaboration with OTR:

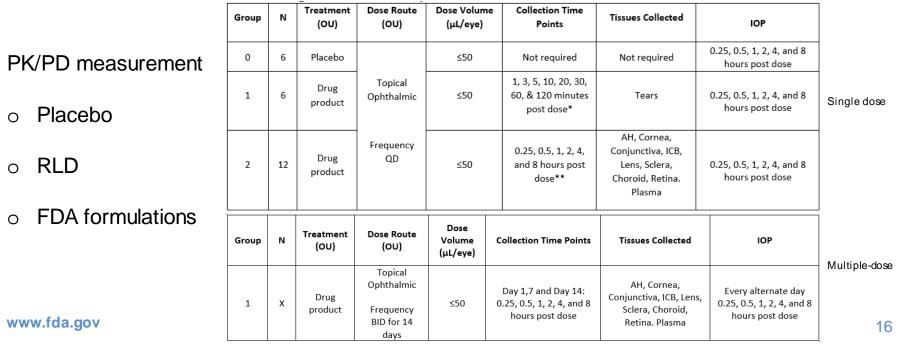
Six formulations prepared with the desired particle sizes and viscosities.

PSD, rheology, polymorphism, interfacial tension and interfacial rheology, pH, osmolality, assay, and drop weight were characterized



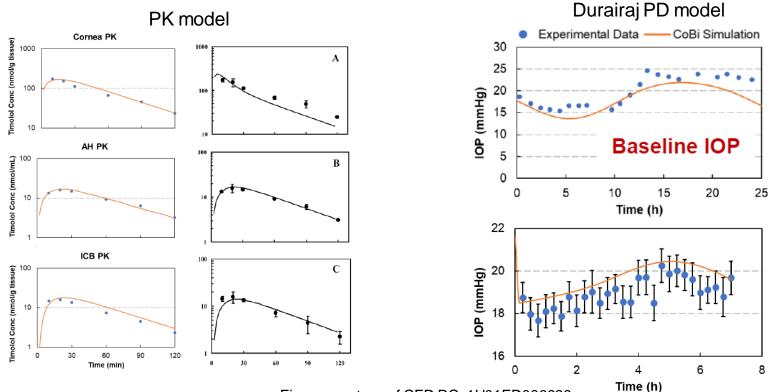


#### External collaboration with Absorption Systems (IDIQ 75F40119D10024)


|             | Task<br>Order | Pharmacological<br>Class                          | API and concentration                          | Trade Name                                                    | Dosage<br>form | NDA                        | Sponsor  | Approval      |
|-------------|---------------|---------------------------------------------------|------------------------------------------------|---------------------------------------------------------------|----------------|----------------------------|----------|---------------|
|             |               | Placebo                                           |                                                |                                                               |                |                            |          |               |
| Duration    |               | Topical carbonic<br>anhydrase                     | Brinzolamide 1%                                | AZOPT <sup>®</sup>                                            | Suspension     | N020816                    | Novartis | April 1, 1998 |
| Products    | 2a            |                                                   | Brinzolamide 1%                                |                                                               | Suspension     | FDA's in-house formulation |          |               |
| to be       |               | inhibitors                                        | Dorzolamide hydrochloride<br>(EQ 2% Base)      | TRUSOPT°                                                      | Solution       | N020408                    | Merck    | Dec 9, 1994   |
| tested      | <b>2</b> L    | Topical carbonic<br>anhydrase<br>inhibitor and/or | Brimonidine tartrate 0.2%                      | ALPHAGAN <sup>®</sup><br>(Discontinued,<br>Generic available) | Solution       | N020613                    | Allergan | Sep 6, 1996   |
| www.fda.gov | 2b            | Alpha-2 agonist or<br>beta blockers               | Brimonidine tartrate 0.2% +<br>Brinzolamide 1% | SIMBRINZA <sup>™</sup>                                        | Suspension     | N204251                    | Novartis | Apr 19, 2013  |
|             |               | (beta-adrenergic)                                 | Betaxolol 0.25%                                | <b>BETOPTIC®</b>                                              | Suspension     | N019845                    | Novartis | Dec 29, 1989  |



## **Ocular PBPK-PD Model Development**


**Purpose**: to relate the ophthalmic suspension formulation changes to PD effect

• External collaboration with Absorption Systems (IDIQ 75F40119D10024)



## **Timolol Rabbit PD models**





www.fda.gov

## **Translation from Preclinical to Human**

 Determine likely changes in ocular physiology between rabbit and human

oExtrapolate rabbit models to human models

 Validate the extrapolated human models

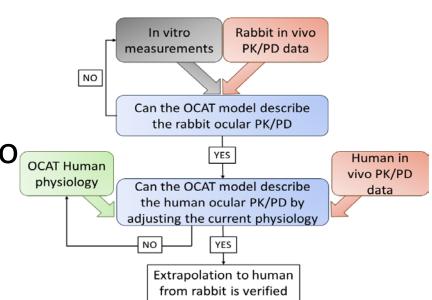



Figure courtesy of Simulations Plus, 1U01FD006927

# Challenges in Ophthalmic Modeling



- Lack of direct eye tissue concentrations for model validation
- Lack of information on melanin binding in eye tissues
- Lack of information on metabolizing enzyme levels in eye tissues
- Mainly considering passive permeation through eye tissue barriers, not active transport

## **Future Directions**



- Model extrapolations to human from preclinical species
- Incorporation of metabolizing enzyme and transport proteins in eye models
- PD model development and validation for IOP drugs
- High quality in vitro studies for IVIVE/C modeling

## **Challenge Question #1**



For topical ophthalmic drug products, FDA has approved generics of the branded name products with all the dosage forms, except

A. Suspensions

B. Emulsions

C. Ointments

D. Solutions

www.fda.gov

## **Challenge Question #2**



For topical ophthalmic generics, which of the following options is <u>NOT</u> often directly used to demonstrate BE?

- A. In vitro studies.
- B. In vivo local eye tissue PK studies.
- C. In vivo systemic PK studies
  - D. Comparative clinical endpoint studies

## Summary



- Demonstrating BE for ophthalmic products may be challenging
- PBPK model can integrate physiology, drug/drug product properties, existing in vitro and in vivo data
- PBPK modeling may bridge the knowledge gap in ophthalmic generic development and assessment
- PBPK modeling approaches may be utilized in regulatory submissions for generic drugs

## Acknowledgements

- FDA/CDER/OGD/ORS Andrew Babiskin **Ross Walenga** Lanyan (Lucy) Fang Liang Zhao Yan Wang **Darby Kozak** Lei Zhang **Robert Lionberger**
- FDA/CDER/OPQ/OTR Xiaoming Xu
- External grantees and contractors
  HHSF223201810255P, Simulations Plus, PI: Jessica Spires
- HHSF223201810151C, CFD RC, PI: Andrzej Przekwas
- o 1U01FD006927, Simulations Plus, PI: Jessica Spires
- o 1U01FD006929, CFD RC, PI: Carrie German
- IDIQ 75F40119D10024, Absorption Systems, POC: Vatsala Naageshwaran

