Reverse Translational Assessment of CYP450- and OATP-Mediated Clearance in Chronic Kidney Disease: from Clinical Data to PBPK Modeling

> 11-5-2019 Ming-Liang Tan

Disclaimer

Views expressed in the slides do not necessarily reflect the official policies of the Department of Health and Human Services; nor does any mention of trade names, commercial practices, or organization imply endorsement by the FDA or the U.S. Government.

FDA

Session Description and Objectives

- Does chronic kidney disease (CKD) affect the drug disposition in other organs, in addition to the kidneys?
- Systematically evaluate the CKD effect on individual elimination pathways

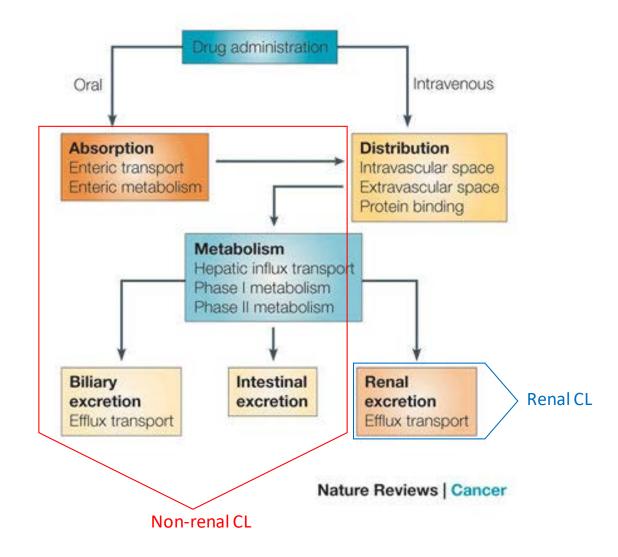
- Is there any general rule concerning the need to conduct clinical study?
- Mechanistic understanding by undertaking reverse translational studies?
- CYP450s and OATPs in healthy and differing severity CKD patients
- PBPK modeling can be a useful tool to identify missing physiological parameters

FDA

Biography and Contact Information

- Ming-Liang Tan, Ph.D. Reviewer (Staff Fellow), Division of Quantitative Methods and Modeling, Office of Research and Standard, OGD/FDA
- Focus on advancing mechanistic based absorption PBPK modeling methods to establish bioequivalence in lieu of a study with clinical endpoints
- PBPK modeling and simulations to predict DDI, pharmacogenetics and renal impairment effect on pharmacokinetics
- mingliang.tan@fda.hhs.gov

Why assess CKD effect on nonrenally cleared drugs?


• Continued growth of CKD population

• CKD alters the elimination of the drug in the kidneys

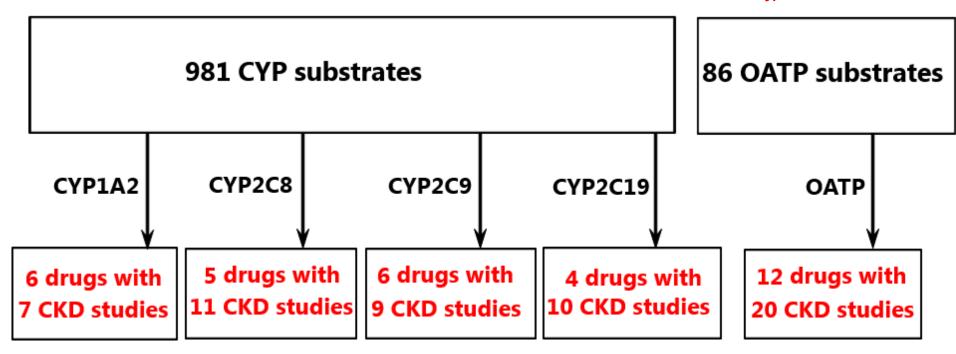
• CKD can also affect the disposition of nonrenally eliminated drugs

• Critical to assess CKD effect on nonrenal pathways, but complex and challenging due to inconsistent PK alterations observed.

Drug disposition and non-renal clearance

Outline

- Meta-analysis of CKD effect on nonrenal pathways
- Mechanistic understanding of CKD effect on nonrenal pathways
 - 1. Base PBPK model verification in healthy volunteers
 - 2. PBPK model application to CKD populations
 - o CYP2C8 substrates
 - o OATP substrate
 - o CYP2C8/OATP dual substrate
- Conclusion


CKD Effect on Hepatic Pathways: Meta-analysis

CYP1A2/CYP2C8/CYP2C9/CYP2C19

OATP

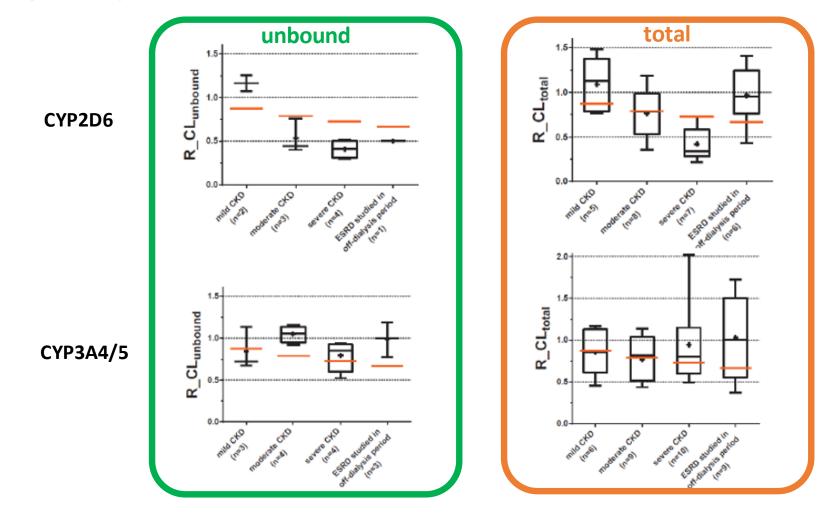
AUCR \ge 3 with typical inhibitors <-> $f_m \ge$ 67%

AUCR \ge 3 with typical inhibitors <-> $f_t \ge 67\%$

AUCR: AUC ratio; f_m =1-1/AUCR: fraction metabolized; f_t =1-1/AUCR for transporters.

Tan M-L et al., Clin. Pharmacol. Ther. 103, 854 (2018)

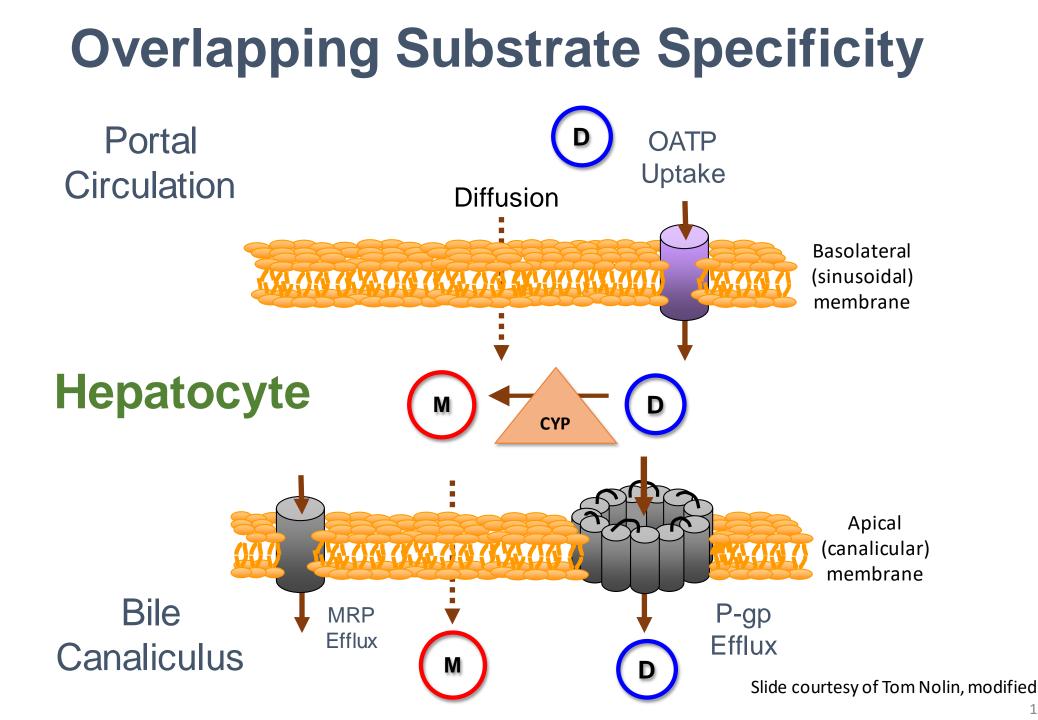
Effect of CKD on CYP2C8 and OATP


unbound total 1.5 CLunbound CL_{total} CYP2C8 R <u>د</u> NOCHO 1.5 CLunbound CLtotal OATP ۵.۵ ل <u>د</u>

Tan M-L et al., Clin. Pharmacol. Ther. 103, 854 (2018)

Effect of CKD on CYP2D6 and CYP3A4/5

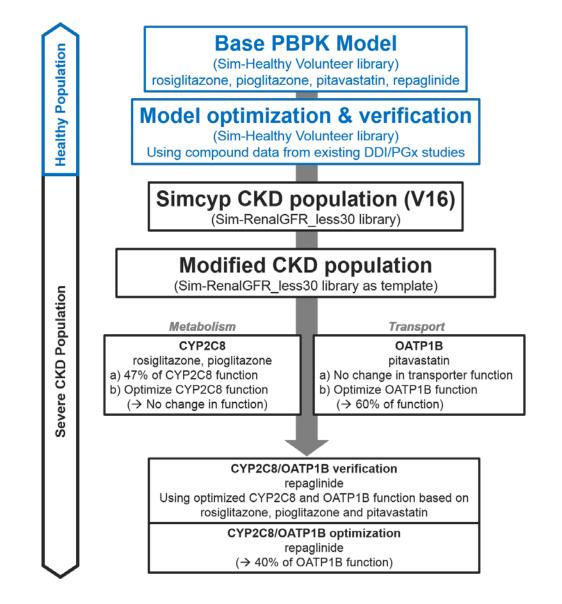
CL generally decreases for CYP2D6, while limited and variable effect for CYP3A4/5


Yoshida K et al., Clin. Pharmacol. Ther. 100, 75 (2016)

Effect of CKD on nonrenally eliminated pathways

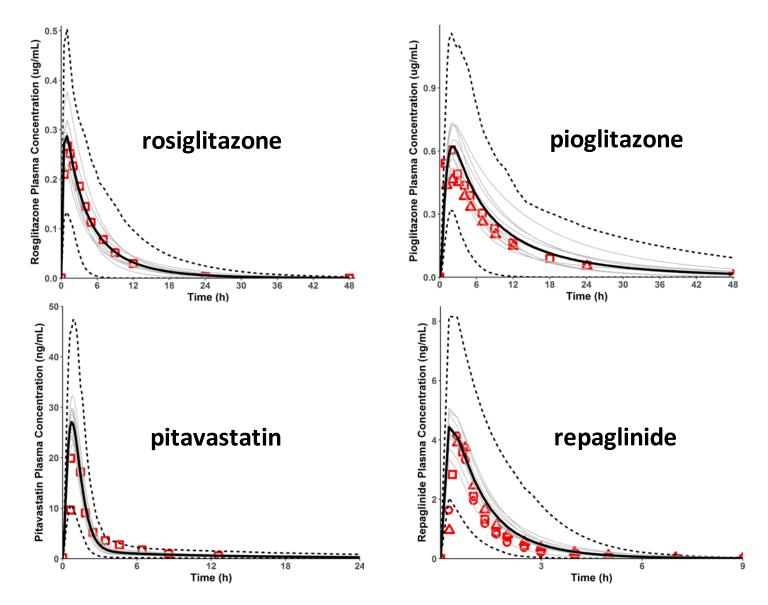
PK of nonenally cleared drugs was affected differentially by CKD

- Limited effect on CYP1A2, CYP2C9, CYP2C19, CYP3A4/5 mediated CL
- **CYP2D6** and **OATP** mediated drug CL generally \downarrow as CKD severity \uparrow
- CYP2C8 mediated CL: a similar decreasing trend observed, but inconclusive due to the overlap with OATP substrates


Yoshida K *et al.*, *Clin. Pharmacol. Ther.* 100, 75 (2016) Tan M-L *et al.*, *Clin. Pharmacol. Ther.* 103, 854 (2018)

Outline

- Meta-analysis of CKD effect on nonrenal pathways
- Mechanistic understanding of CKD effect on nonrenal pathways
 - 1. Base PBPK model verification in healthy volunteers
 - 2. PBPK model application to CKD populations
 - o CYP2C8 substrates (rosiglitazone, pioglitazone)
 - o OATP substrate (pitavastatin)
 - o CYP2C8/OATP dual substrate (repaglinide)
- Conclusion


Workflow to predict drug PK in RI using PBPK

PBPK base models

Parameters	Rosiglitazone	Pioglitazone	Pitavastatin	Repaglinide
Physicochemical properties				
fu	0.002	0.015	0.005	0.015
Blood/plasma ratio	0.57	1	0.55	0.62
Absorption				
Absorption type	First order	ADAM	ADAM	First order
Fraction absorbed	1 (ka=3.6 /h)	0.98	0.99	0.997 (ka=2.8 /h)
Peff, man (10 ⁻⁴ cm/s)	1.291	3.754	4.688	6.490
Distribution				
Distribution model	Minimal PBPK	Minimal PBPK	Full PBPK	Full PBPK
Vss (l/kg)	0.12	0.253	1.88	0.256
Elimination				
CLint,CYP2C8 (µl/min/mg protein)	191 (HLM)	27.5 (HLM)	12.98 (rCYP) (µl/min/pmol)	93 (HLM)
CLint,CYP2C9 (µl /min/mg protein)	102 (HLM)	1.5 (HLM)	7.93 (rCYP) (µl/min/pmol)	
CLint,CYP3A4 (µl /min/mg protein)				38 (HLM)
CLint,others (µl/min/mg protein)			1453	
Renal clearance (I/h)	0.32	0	0.129	0
Hepatobiliary transport				
Passive diffusion			0.011	0.024
(ml/min/10 ⁶ cells)				
CLint,active (ml/min/10 ⁶ cells)			0.0584 (OATB1B1), 0.0051 (OATP1B3)	0.037 (OATP1B1)

PBPK Model Verification in Healthy Volunteers

Tan M-L et al., Clin. Pharmacol. Ther. 105, 719 (2019)

DDI and PGx Studies

Drugs	SLCO1B1 polymorphism or drug inhibitor	Simulated AUCR	Observed AUCR	R value
Rosiglitazone	Gemfibrozil	2.41	2.36	1.02
Pioglitazone	Gemfibrozil	3.84	3.22	1.19
Pitavastatin	SLCO1B1 polymorphism (c. 521 CC vs c. 521 TT)	1.90	3.08	0.62
	Gemfibrozil	1.58	1.45	1.09
	Cyclosporine	2.84	4.55	0.62
Repaglinide	SLCO1B1 polymorphism (c. 521 CC vs c. 521 TT)	1.88	1.83	0.97
	Gemfibrozil	3.22	5.0	0.64
	Cyclosporine	3.00	2.4	1.25

DDI: drug-drug interaction, PGx: pharmacogenetics

All the predicted AUCR values were within two-fold of the observed data

Parameters	HV	Severe CKD	Ratio _{RI/Normal}
2C8 (pmol/mg-protein)	24	11.3	0.47
2C9 (pmol/mg-protein)	73	34.5	0.47
2C19 (pmol/mg-protein)	14	6	0.43
3A4 (pmol/mg-protein)	137	87.3	0.64
OATP1B1 (pmol/106 hepatocytes)	4.28	4.28	1
OATP1B3 (pmol/10 ⁶ hepatocytes)	4.3	4.3	1
HSA (g/l) M	50.34	43.08	0.86
F	49.38	37.8	0.77
Hematocrit (%) M	43.0	33.2	0.77
F	38.0	31.3	0.82
Gastric emptying time (h)	0.40	0.65	1.63

Selected physiological and biochemical parameters in Simcyp V16

HSA: human serum albumin, HV: healthy volunteer

Simcyp Simulator (V16R1; Certara, UK)

18

CKD Effect on CYP2C8 Substrate Drugs

		fu (fu (%)	AUCR (total)		R	AUCR (unbound)		R
Substrate Drug	CKD populations	HV	CKD	Simulated	Observed		Simulated	Observed	value
Rosiglitazone	Simcyp (CYP2C8 47%)	0.16	0.22	1.44	0.81	1.78	2.47	1.11	2.23
	Modified (CYP2C8 100%)	0.16	0.22	0.93	0.81	1.14	1.58	1.11	1.42
Pioglitazone	Simcyp (CYP2C8 47%)	3	3.5	1.58	0.78	2.03	2.40	0.92	2.6*
1 logillazone	Modified (CYP2C8 100%)	3	3.5	0.90	0.78	1.15	1.36	0.92	1.48

- Approximate two-fold overprediction when using default Simcyp severe CKD population
- Comparable to the observed values when modified population was used assuming no change in the CYP2C8 function from the HV

\rightarrow Minimal changes in CYP2C8 activity in severe CKD population

CKD Effect on OATP Substrate Drug

		fu (%)	AUCR (total)		R	AUCR (I	AUCR (unbound)		
Substrate Drug		HV	· ·	Simulated	Observed	value	Simulated	Observed	R value
	Simcyp (CYP2C8 47%,OATP100%)	0.6	0.6	0.85	1.36	0.63	1.05	1.36	0.77
Pitavastatin	Simcyp (CYP2C8 47%,OATP 60%)	0.6	0.6	1.28	1.36	0.94	1.59	1.36	1.17
	Modified (CYP2C8 100%,OATP100%)	0.6	0.6	0.84	1.36	0.62	1.04	1.36	0.77
	Modified (CYP2C8 100%,OATP60%)	0.6	0.6	1.28	1.36	0.94	1.59	1.36	1.17

- Under predicted when using default Simcyp severe CKD population
- OATP activity needs to be reduced to up to 60% in order to match the observed AUCR

\rightarrow Decreased OATP activity is likely in severe CKD population

CKD Effect on CYP2C8/OATP Substrate Drug

Substrate CKD populations fu Drug HV		fu (%)	AUCR (total)		R	AUCR (unbound)		R	
			Simulated	Observed	value	Simulated	Observed	value	
	Simcyp (CYP2C8 47%,OATP100%)	3.6	3.6	1.37	2.72	0.51	1.72	2.72	0.63
	Simcyp (CYP2C8 47%,OATP 50%)	3.6	3.6	2.55	2.72	0.94	3.18	2.72	1.17
	Modified (CYP2C8 100%,OATP100%)	3.6	3.6	1.08	2.72	0.40	1.35	2.72	0.50
Repaglinide	Modified (CYP2C8 100%,OATP60%)	3.6	3.6	1.72	2.72	0.63	2.14	2.72	0.79
	Modified (CYP2C8 100%,OATP45%)	3.6	3.6	2.20	2.72	0.81	2.75	2.72	1.01
	Modified (CYP2C8 100%,OATP40%)	3.6	3.6	2.43	2.72	0.89	3.03	2.72	1.11

- Under predicted (~50% of the observed values) when using default Simcyp severe CKD population
- Improved prediction when using OATP reduced to 60% from pitavastatin study
- OATP activity needs to be reduced to ~ 40% in order to match the observed AUCR

\rightarrow Decreased OATP activity is likely in severe CKD population

Conclusions

- CYP2D6 and OATP1B mediated drug CL generally \downarrow as CKD severity \uparrow
- Limited effect on CYP1A2, CYP2C8, CYP2C9, CYP2C19, CYP3A4/5 mediated CL
- CYP enzyme and OATP1B transporter interplay can be understood by PBPK modeling:
 - Negligible reduction in CYP2C8 enzyme function required to match the AUC change for CYP2C8 substrates
 - ✓ Decreases in OATP activity of up to 60% needed to match the AUC change observed in severe CKD subjects.
- Reverse translational approach to identify missing physiological aspects based on the clinical data available, using PBPK modeling.

References

- Tan M-L, Zhao P, Zhang L, Ho YF, Varma MVS, Neuhoff S, Nolin TD, Galetin A and Huang SM, Use of physiologically based pharmacokinetic modeling to evaluate the effect of chronic kidney disease on the disposition of hepatic CYP2C8 and OATP1B drug substrates, *Clin. Pharmacol. Ther.* 105, 719 (2019)
- Tan M-L,Yoshida K, Zhao P, Zhang L, Nolin TD, Piquette-Miller M, Galetin A and Huang SM, Effect of chronic kidney disease on nonrenal elimination pathways: a systematic assessment of CYP1A2, CYP2C8, CYP2C9, CYP2C19 and OATP, *Clin. Pharmacol. Ther.* 103, 854 (2018)
- Yoshida K, Sun B, Zhang L, Zhao P, Abernethy DR, Nolin TD, Rostami-Hodjegan A and Huang SM, Systematic and quantitative assessment of the effect of chronic kidney disease on CYP2D6 and CYP3A4/5, *Clin. Pharmacol. Ther.* 100, 75 (2016)
- Rowland Yeo K., Aarabi M., Jamei M. and Rostami-Hodjegan A. Modeling and predicting drug pharmacokinetics in patients with renal impairment. *Expert Rev. Clin. Pharmacol.* 4, 261 (2011)
- Suzuki Y, Ono H, Tanaka R, Sato F, Sato Y, Ohno K, Mimata H and Itoh H, Recovery of OATP1B activity after living kidney transplantation in patients with end-stage renal disease, *Pharm. Res.* 36, 58 (2019)

Acknowledgments

- Dr. Shiew-Mei Huang (FDA)
- Dr. Lei Zhang (FDA)
- Dr. Ping Zhao (Bill and Melinda Gates Foundation)
- Dr. Kenta Yoshida (Genentech)
- Dr. Yunn-Fang Ho (National Taiwan University)
- Dr. Manthena Varma (Pfizer Inc)
- Dr. Sibylle Neuhoff (Simcyp)
- Dr. Thomas D. Nolin (University of Pittsburgh)
- Dr. Aleksandra Galetin (University of Manchester)

- Dr. Liang Zhao (FDA)
- Dr. Myoung-Jin Kim (FDA)
- Dr. Andrew Babiskin (FDA)
- Dr. Robert Lionburger (FDA)
- OCP/FDA Renal Impairment guidance working group
- The Oak Ridge Institute for Science and Education (ORISE) program
- U.S. Food and Drug Administration's Medical Countermeasures initiative.

Questions

mingliang.tan@fda.hhs.gov