

Generic Oral Modified Release Drug Products: Establishing Bioequivalence for Additional Strengths

Wei-Jhe Sun, Rong Wang

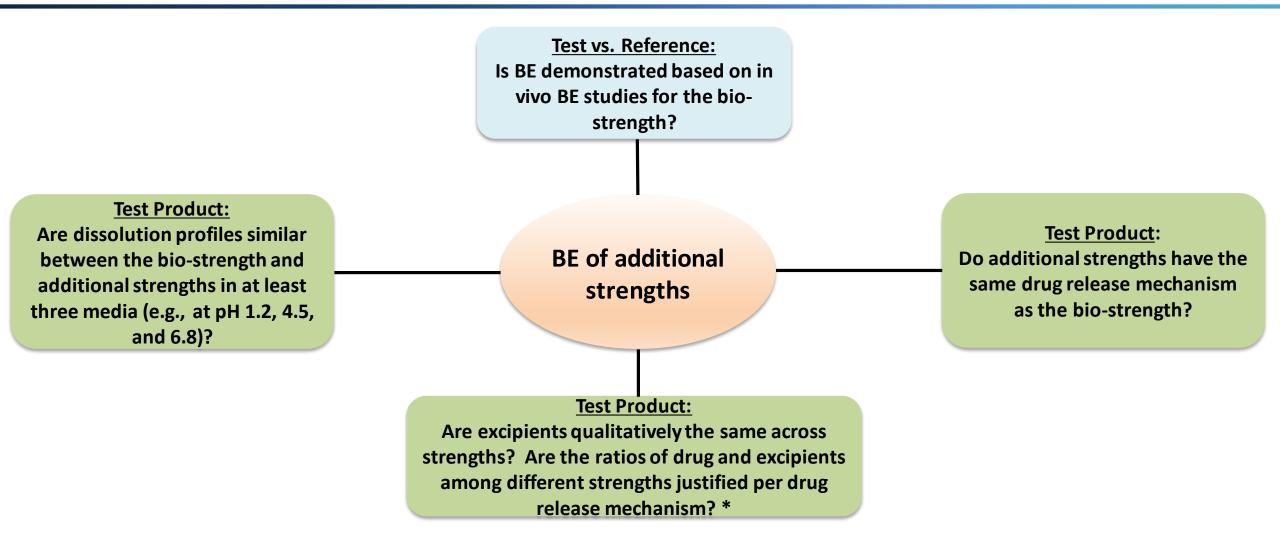
Office of Generic Drugs Center for Drug Evaluation and Research U.S. Food and Drug Administration

> AAPS Webinar 12/10/2020

Disclaimer

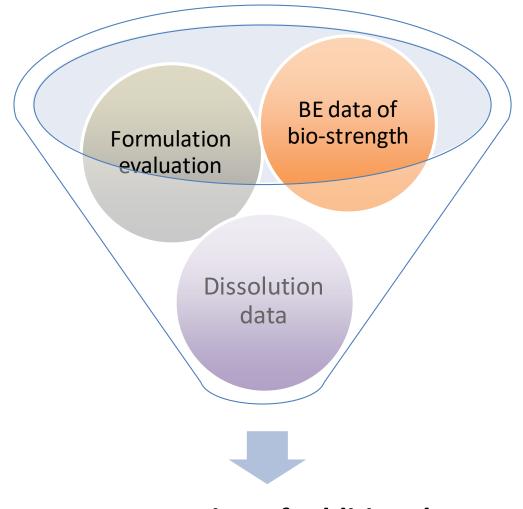
This presentation reflects the views of the authors and should not be construed to represent FDA's views or policies.

Outline


- Background
- Considerations in bioequivalence (BE) demonstration for additional strengths of generic oral modified release (MR) drug products
 - ✓ Bio-strength: bioequivalence (Test vs. Reference)
 - ✓ Dissolution profile similarities across strengths of test product
 - ✓ Formulation assessment across strengths of test product
- Case studies
 - ✓ Identification and exploration of release-controlling excipients (RCE)
 - ✓ Demonstrating BE for additional strengths
- Conclusions

Background

- For an oral MR drug product with multiple strengths
 - Generic applicants may conduct in vivo BE studies on one strength ("biostrength"; usually the highest strength)
 - Alternative methods may be used to demonstrate BE for additional strengths in lieu of additional in vivo BE studies on those strengths when certain criteria are met:
 - *Reference listed drug (RLD):* Generally if the RLD exhibits similar bioavailability across different strengths given at the same dose
 - *Test product*: detailed in subsequent slides


Considerations in BE Demonstration for Additional Strengths of Oral MR Products

*Note: Formulation composition proportionality may not be the only factor to determine the need for an in vivo BE study to demonstrate BE.

FDA

BE Demonstration of Additional Strengths -Totality-of-Evidence

BE Demonstration of additional strengths

BE Data of Bio-strength

BE data of biostrength

- Study conduct: Fasting and fed
- Pharmacokinetic parameters:
 - I. AUC_{0-t} , AUC_{0-inf} , AUC truncated or partial AUCs if applicable, and C_{max}
 - II. Supportive information: T_{max} , K_{el} and $t_{1/2}$
- Confidence interval values: 80.00% 125.00%

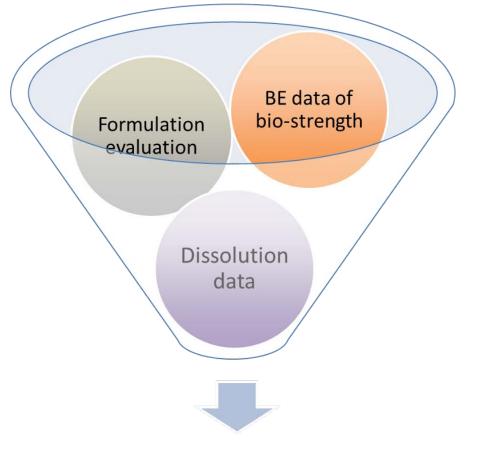
Dissolution Testing

Dissolution testing of all strengths is acceptable

- The drug products should exhibit similar dissolution profiles between the bio-strength and additional strengths based on the similarity factor (f₂) test or other appropriate statistical approaches in at least three dissolution media (e.g., at pH 1.2, 4.5, and 6.8)
- We recommend that applicants generate dissolution profiles on the test and reference products of all strengths

Dissolution

data

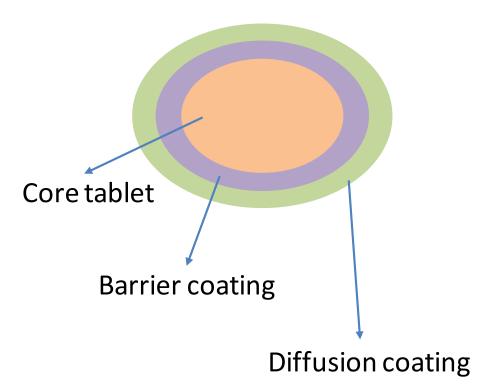

Formulation Evaluation

Formulation Evaluation

- Identify RCE and non-release controlling excipients (NRCE) in the formulation (Case A1 - A2)
- Assess formulation composition across strengths (Case B1 – B5)
 - Evaluate % difference in each RCE and NRCE
 between the bio-strength and additional strengths
 separately

BE Demonstration of Additional Strengths -Totality-of-Evidence

BE Demonstration of additional strengths


The decision on the BE demonstration of additional strengths is the result of considering all three pieces of information.

Function of Excipients

- A specific excipient may be an RCE or NRCE depending on API properties, formulation design, and location in formulation as illustrated below.
 - a) Sodium citrate (in matrix tablet)
 - pH-dependent API: could be an RCE
 - pH-independent API: may be an NRCE
 - b) HPMC E5LV (tablets with a release controlling film)
 - In film: could be an RCE
 - In core tablet: may be an NRCE
 - c) Mannitol: (matrix tablet vs osmotic pump tablet)
 - In osmotic pump system: may or may not be an RCE
 - In matrix system : may be an NRCE

Case A1 _Formulation and RCE Assessment

	mg/tablet	% w/w
Core tablet		
НРМС К100М	140	21.3
МСС	212	32.2
Alginic Acid	40	6.1
Magnesium Stearate	8	1.2
Barrier coating		
Ethylcellulose	69	10.5
Talc	28	4.2
Diffusion coating		
ΑΡΙ	100	15.2
Ethylcellulose	55	8.4
Polysorbate 80	3	0.5
Talc	3	0.5
Total	658	100

FDA

Case A1 _Assessment of RCE

Assessment of the formulation components

	Core tablet	Barrier coating	Diffusion coating	
Effect on dissolution	Low	Medium	High	

Assessment of barrier coating formulation variables

	Ethylcellulose level	Talc level
Effect on dissolution	High	Low

Assessment of diffusion coating formulation variables

	Ethylcellulose level	Polysorbate 80 level	Talc level
Effect on dissolution	High	High	Low

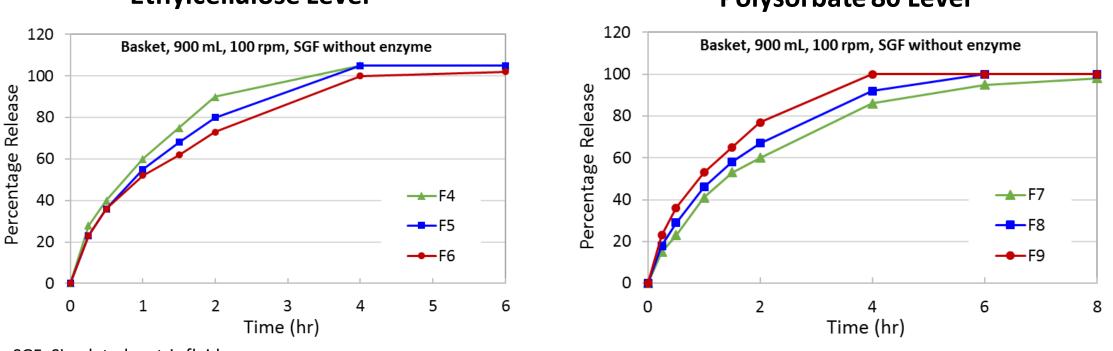
Case A1 _ RCE Determination in Barrier Coating

	F1 (mg/tab)	F2 (mg/tab)	F3 (mg/tab)	120 -
Core tablet				USPI Basket ,900mL, 100rpm, SGF without enzyme
НРМС К100М	140	140	140	100
МСС	212	212	212	80
Alginic Acid	40	40	40	→ F1 → F2
Magnesium Stearate	8	8	8	→ F1 → F2
Barrier coating				₩ 40 F3
Ethylcellulose	53	61	69	20
Talc	28	28	28	
Diffusion coating				0 1 2 3 4 5 6 7 8 Time (hr.)
ΑΡΙ	100	100	100	Change of ethylcellulose amount on the
Ethylcellulose	55	55	55	barrier coating doesn't affect drug release
Polysorbate 80	3	3	3	rate
Talc	3	3	3	USP: United States Pharmacopeia; SGF: Simulated gastric fluid
Total	642	650	658	

www.fda.gov

FDA

Case A1 _ Diffusion Coating Evaluation


	Ethyl	cellulose Le	vel	Poly	sorbate 80 I	Level	
	F4 (mg/tab)	F5 (mg/tab)	F6 (mg/tab)	F7 (mg/tab)	F8 (mg/tab)	F9 (mg/tab)	
Core tablet							
HPMC K100M	140	140	140	140	140	140	
MCC	212	212	212	212	212	212	
Alginic Acid	40	40	40	40	40	40	
Magnesium Stearate	8	8	8	8	8	8	
Barrier coating							
Ethylcellulose	69	69	69	69	69	69	
Talc	28	28	28	28	28	28	
Diffusion coating							
ΑΡΙ	100	100	100	100	100	100	
Ethylcellulose	50	58	66	55	55	55	
Polysorbate 80	3	3	3	2	4	6	
Talc	3	3	3	3	3	3	
Total	653	661	669	657	659	661	

www.fda.gov

FDA

Case A1 _ Diffusion Coating Evaluation

Ethylcellulose Level

Polysorbate 80 Level

SGF: Simulated gastric fluid

• Change of ethylcellulose amount and polysorbate 80 amount on diffusion coating affects drug dissolution rate

Case A2 _Formulation and RCE Assessment

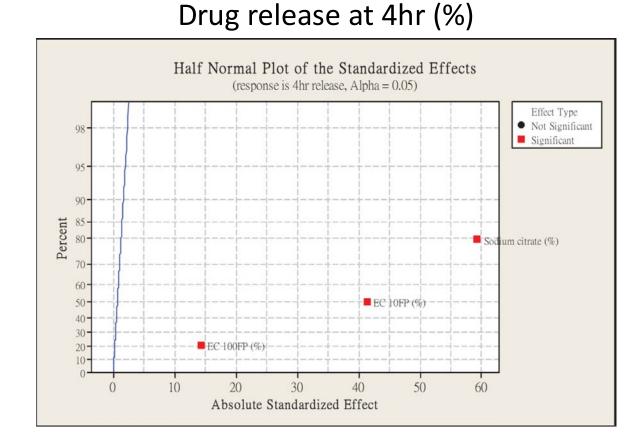
	mg/tablet	% w/w
API	200	41.6
Ethylcellulose 10	40	8.3
Ethylcellulose 100	75	15.6
Lactose	50	10.4
MCC	50	10.4
Sodium citrate	55	11.4
Silicon dioxide	6	1.2
Magnesium Stearate	5	1.0
Total	481	100

API: solubility is pHdependent

FDA

Case A2 _Understanding the RCE through Design of Experiments (DOE) Study

• DOE study


Factors	% w/w per a tablet					
Factors	Low level	Intermediatelevel	Highlevel			
Ethylcellulose 10	7	8	9			
Ethylcellulose 100	15	16	17			
Sodium citrate	10	11	12			

Response: drug release at 4 hour (%)

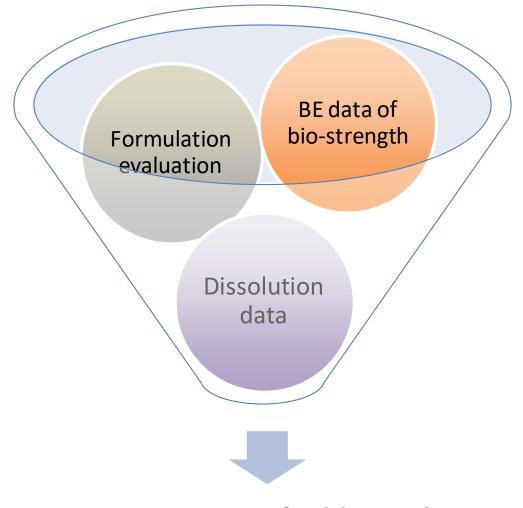
• Formulation design and results

	EC 10	EC 100	Sodium citrate	Drug release at 4 hour (%)
F1	8	16	11	70
F2	7	15	12	98
F3	9	15	10	70
F4	7	17	10	77
F5	9	17	12	83

Case A2 _Effect of Excipients on Dissolution

Ethylcellulose 10, ethylcellulose 100 and sodium citrate have an impact on drug dissolution rate.

www.fda.gov


FDA

Summary

- An excipient may be an RCE or NRCE depending on the formulation design:
 - In Case A1, ethylcellulose is considered as an NRCE in barrier coating but is an RCE in diffusion coating
- Case A2 shows that ethylcellulose 10, ethylcellulose 100 and sodium citrate are considered as RCEs
- The RCE can be determined with a suitable study design
- The RCE determination could affect the compositional proportionality evaluation

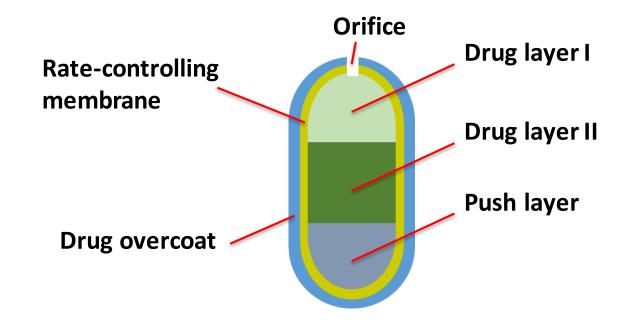
BE Demonstration of Additional Strengths -Totality-of-Evidence

BE Demonstration of additional strengths

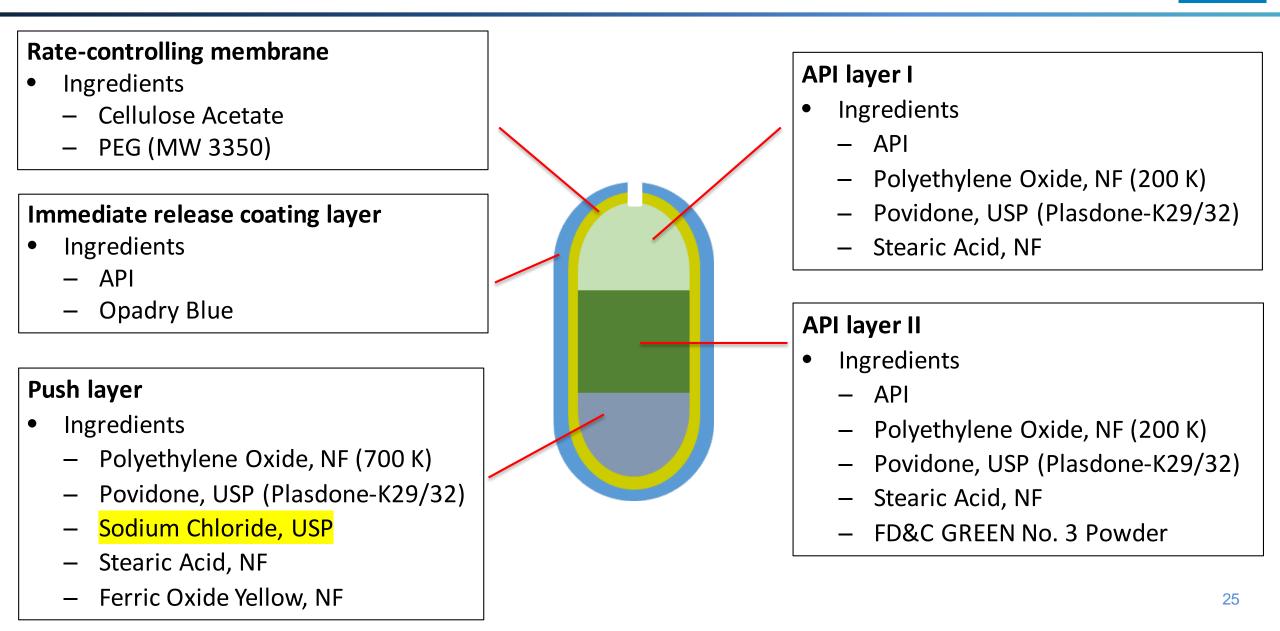
Case Examples to Illustrate Various Considerations for BE Demonstration of Additional Strengths

- RCE evaluation based on drug delivery mechanism (Case B1)
- Change of NRCE (Case B2)
- Pattern of RLD vs. Test (Cases B3, B4)
- Dissolution data and BE study results on bio-strength (Case B5)

Case Study-B1


Taking Drug Delivery Mechanism into Account for Evaluation of RCEs

Drug Product with Osmotic Pump Formulation


- RLD: An extended release (ER) tablet that uses osmotic pump design to deliver the drug product over a 12-hour period.
 - When the osmotic pump design is ingested, the drug in the overcoat is quickly released; then an osmotic gradient is established across the rate-controlling membrane.

- Test: Similar osmotic pump design was adopted.
 - The API is delivered by a combined process of aqueous dissolution of the drug overcoat (IR) and osmotic delivery of the core drug (ER).

Test Formulations (20 mg and 60 mg Strengths)

Evaluation of RCEs When Sodium Chloride is Included

Release Controlling Excipient	Function	Quantity of Release Controlling Excipient per Tablet (mg)		Excip	elease Controlling ients w%)	Difference in Percentage in each RCE between Bio- strength and lower strength	
		20 mg	60 mg (bio-strength)	20 mg	60 mg (bio-strength)	20 mg vs 60 mg	
Cellulose Acetate	Rate Controlling Polymer	21.6	24.3	10.3	6.1	4.2	
PEG (MW 3350)	Rate Controlling Polymer	2.4	2.7	1.1	0.7	0.4	
Polyethylene Oxide, NF (200 K)	Rate Controlling Polymer	95	194	45.5	48.4	-2.9	
Polyethylene Oxide, NF (700 K)	Rate Controlling Polymer	70	140	33.5	34.9	-1.4	
Sodium Chloride	Osmotic Agent	20	20 40		9.6 10		
Total Difference of	intal Difference of DCEs						

Total Difference of RCEs

Evaluation of NRCE

Non-Release Controlling Excipient	Function	Quantity of NRCE per Tablet (mg)			l Tablet Weight w%)	Difference in Percentage in each NRCE between Bio- strength and lower strength	
		20 mg (bio-strength)		20 mg	60 mg (bio-strength)	20 mg vs 60 mg	
Povidone	Binder	11	23.35	4.13	4.36	-0.23	
Stearic Acid	Lubricant	1.05	2.2	0.39	0.41	-0.02	
FD&C GREEN No. 3	Colorant	0.04	0.08	0.02	0.01	0.01	
Ferric Oxide Yellow, NF	Colorant	0.55	1.1	0.21	0.21	0	
Opadry Blue	Film Coat	24.5 48.0		9.2	9.0	0.2	
Total Difference of NRC	0.46						

Demonstrating BE for 20 mg Strength between Test and RLD Products

- Formulations are compositionally proportional between 20 mg and 60 mg of the test products
 - The total difference of RCEs is considered acceptable
 - Sodium Chloride as an osmotic agent should be considered as a RCE in the current formulation
 - The total difference of NRCEs is minimal
- Acceptable fasting and fed BE studies comparing the bio-strength, 60 mg of test product with 60 mg of the reference product
- Comparable dissolution profiles between 20 mg and 60 mg of the test products under quality control (QC) method (water as dissolution medium) and multi-media (pH 1.2, 4.5 and 6.8) conditions

Case Study-B2

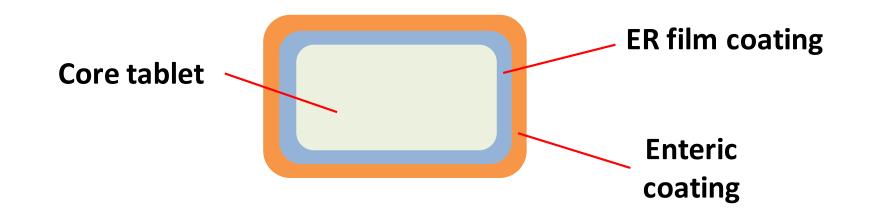
Non-Release Controlling Excipients are Not Compositionally Proportional

Test Formulations (10 mg, 20 mg & 30 mg strengths)

	Function	C	Quantity/Tablet (mg)			Quantity/Tablet (w/w%)		
Ingredient		10 mg	20 mg	30 mg (bio-strength)	10 mg	20 mg	30 mg (bio-strength)	
ΑΡΙ	ΑΡΙ	10	20	30	11.11	22.22	33.33	
Hypromellose, K4M	Rate Controlling Polymer	45	45	45	50	50	50	
Microcystalline Cellulose (Avicel PH-302)	Filler	34.1	24.1	14.1	37.89	26.78	15.67	
Colloidal Silicon Dioxide	Glidant	0.45	0.45	0.45	0.5	0.5	0.5	
Magnesium Stearate	Lubricant	0.45	0.45	0.45	0.5	0.5	0.5	
Total weight or w/w% of Core Tablet		90	90	90	100%	100%	100%	

www.fda.gov

Demonstrating BE for 10 mg and 20 mg between Test and RLD Products



- Formulations of 10 mg and 20 mg are considered proportionally similar to 30 mg of the test product
 - There is no difference in RCE across all strengths.
 - The change in NRCE (microcrystalline cellulose, NF) between the bio-strength and other strengths is considered acceptable
 - To achieve the constant core tablet weight across the strengths, it is allowable to vary the amount of the non-release controlling excipient
 - This is the only difference across all strengths
- Acceptable BE studies comparing 30 mg of the test and RLD products
- Comparable dissolution data (10 mg vs 30 mg, 20 mg vs 30 mg) under the QC method condition and multi-media (pH 1.2, 4.5 and 6.8) conditions

Case Study-B3

Formulations Coated with Both ER and Delayed Release (DR) Coatings

Test Formulations (100 mg & 200 mg Strengths)

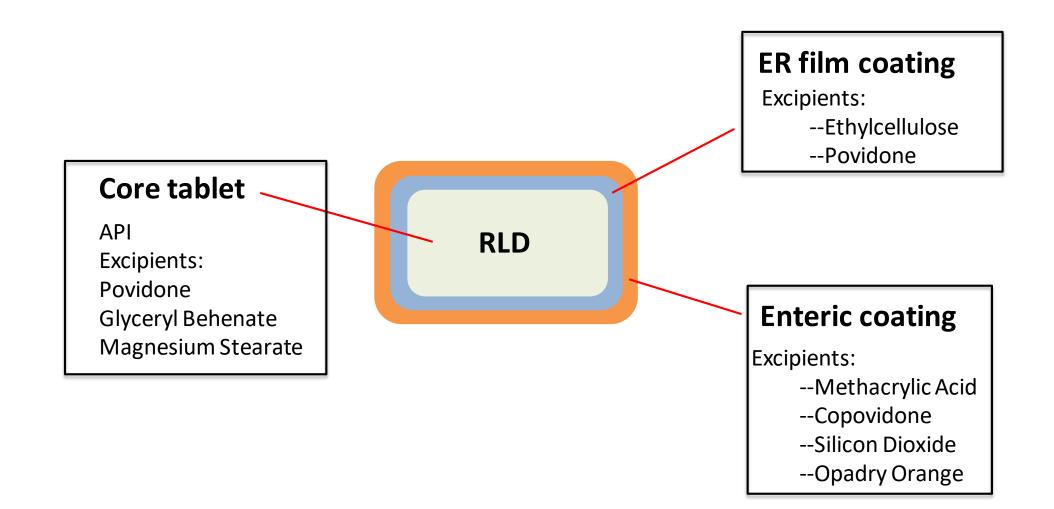
	Ingredient	Function	Quantity/Tablet (mg)		Quantity /Tablet (w/w%)	
	ingreatent		100 mg	200 mg, (bio-strength)	100 mg	200 mg, (bio-strength)
Core tablet	API		100	200	74.62	78.25
	Hydroxypropyl Cellulose	Binder	6	12	4.48	4.69
	Colloidal Silicon Dioxide	Glidant	4	8	2.99	3.13
	Glyceryl behenate	Lubricant	10	20	7.46	7.82
ER film coating	Ethyl Cellulose	ER polymer	3.0	3.5	2.24	1.37
	Hydroxypropylcellulose	Pore former	5.5	6.0	4.1	2.35
Enteric coating	Methacrylic acid copolymer	Enteric Polymer	2.5	3.6	1.87	1.41
	Silicon Dioxide	Glidant	0.5	1.0	0.37	0.39
	Copovidone	Pore former	1.5	2.5	1.12	0.98
Total Tablet Weight or w/w%			134	255.6	100%	100%

Evaluation of RCEs from both ER Film Coating and Enteric Coating

Release Controlling	Function	Quantity/Tablet (mg)		Quantity /Total (w/w%)		Change in Percentage in
Excipient		100 mg	200 mg	100 mg	200 mg	each RCE between 100 mg vs. 200 mg
Ethylcellulose	ER polymer	3	3.5	24	22.44	1.56
Hydroxypropyl cellulose	Pore former	5.5	6	44	38.46	5.54
Methacrylic Acid	Enteric Polymer	2.5	3.6	20	23.08	-3.08
Copovidone	Pore former	1.5	2.5	12	16.02	-4.02
Total Weight or w/w% of RCEs		12.5	15.6	100%	100%	
Total Difference of RCEs						14.2

Evaluating of ER Film and Enteric Coating Separately

Evaluation of ER film coating


Release Controlling Excipient	Quantity/Tablet (mg)		Quantity/Total Release (w/v	Difference in Percentage in each RCE between 100	
	100 mg	200 mg	100 mg	200 mg	mg vs. 200 mg
Ethylcellulose	3	3.5	35.29	36.84	-1.55
Hydroxypropylcellulose	5.5	6	64.71	63.16	1.55
Total weight or w/w% of RCEs	8.5	9.5	100%	100%	
Total Difference of RCEs	3.1				

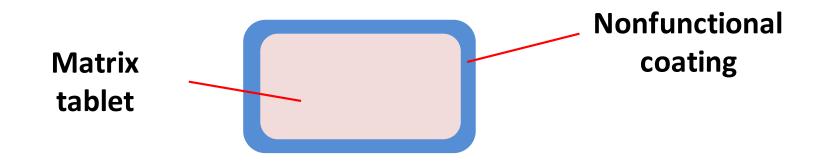
Evaluation of enteric coating

Release Controlling Excipient	Quantity/Tablet (mg)		Quantity/Total Release (w/w	Difference in Percentage in each RCE between 100	
	100 mg	200 mg	100 mg	200 mg	mg vs. 200 mg
Methacrylic Acid	2.5	3.6	62.5	59.02	3.48
Copovidone	1.5	2.5	37.5	40.98	-3.48
Total weight or w/w% of RCEs	4	6.1	100%	100%	
Total Difference of RCEs					6.96

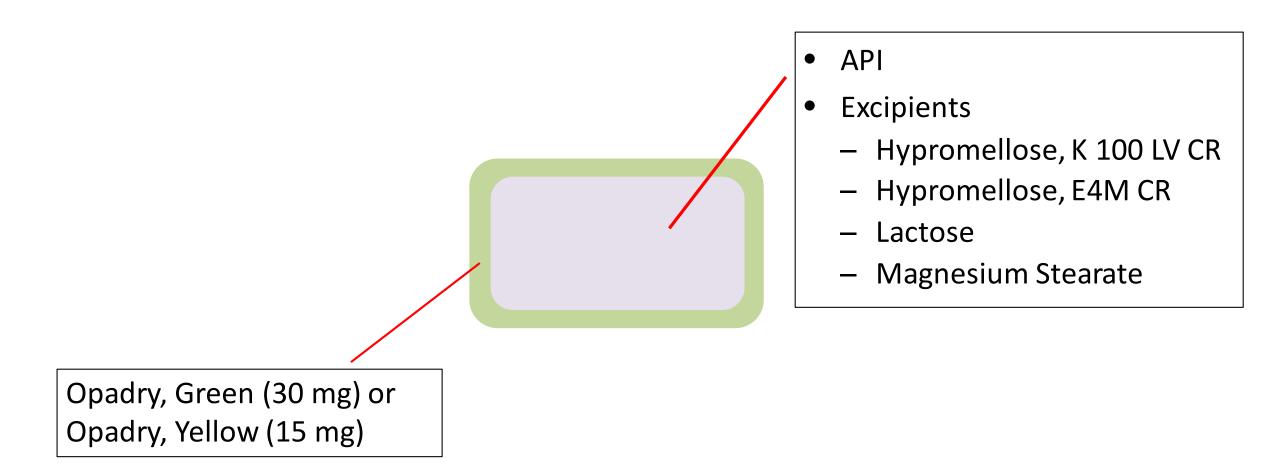
35

RLD Formulation (100 mg and 200 mg Strengths)

Demonstrating BE for 100 mg between Test and RLD Products

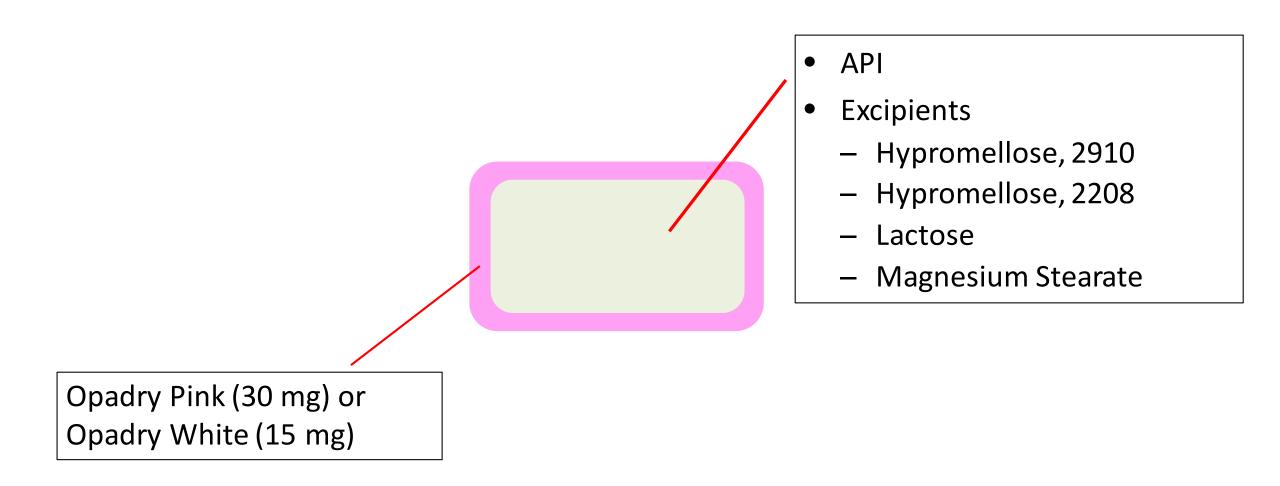


- The test and RLD formulations exhibit similar pattern when comparing 100 mg with 200 mg strength
 - Difference in RCEs of Total RCE Weight between 100 mg and 200 mg of the RLD Product
 - when combining all RCEs from both ER and DR layers
 - when the difference in RCEs was calculated in each individual layer
 - The test formulation has the same release controlling polymer and delayed release enteric polymer as those in the RLD formulation
 - Difference in NRCEs (total difference in w/w% of total tablet weight) is minimal across two strengths
- Acceptable BE studies comparing 200 mg of the test and RLD products
- Comparable dissolution data (100 mg vs. 200 mg) under the QC method condition and multi-media (pH 1.2, 4.5 and 6.8) conditions



Case Study-B4

RLD and Test Formulations Exhibit Similar Pattern


Test Formulations (15 mg and 30 mg Strengths)

Non-Release Controlling Excipient	30 mg (bio-strength)	15 mg	Difference in percentage in each NRCE between 30 mg and 15 mg	Release Controlling Excipient	30 mg (bio-strength)	15 mg	Difference in percentage in each RCE between 30 mg and 15 mg
Lactose	53.02% (167 mg)	49.05% (103 mg)	-3.97%	Hypromellose, E4M CR	66.67% (80 mg)	43.75% (35 mg)	-22.92%
Magnesium Stearate	0.95% (3 mg)	0.95% (2 mg)	0%	Hypromellose, K 100 LV CR	33.33% (40 mg)	56.25% (45 mg)	22.92%
Total Tablet Weight	315 mg	210 mg		Total Weight of RCEs	120 mg	80 mg	
Total Difference of NRCEs		3.97%	Total Difference of RCEs			45.84%	

RLD Formulation (15 mg and 30 mg strengths)

Non-Release Controlling Excipient	30 mg (bio-strength)	15 mg	Difference in Percentage in each NRCE between 30 mg and 15 mg	Release Controlling Excipient	30 mg (bio-strength)	15 mg	Difference in percentage in each RCE between 30 mg and 15 mg
Lactose	56.2% (177 mg)	56.2% (118 mg)	0 %	Hypromellose, 2910	67.50% (81 mg)	42.50% (34 mg)	-25.00%
Magnesium Stearate	0.95% (3 mg)	0.95% (2 mg)	0%	Hypromellose, 2208	32.50% (39 mg)	57.50% (46 mg)	25.00%
Total Tablet Weight	315 mg	210 mg		Total Weight of RCEs	120 mg	80 mg	
Total Differenc	e of NRCEs		0 %	Total Difference	of RCEs		50.00%

RCE Comparison: Test and RLD

RCEs of Test Formulation

RCEs of RLD Formulation

Release Controlling Excipient	30 mg (bio-strength)	15 mg	Difference in percentage in each RCE between 30 mg and 15 mg	Release Controlling Excipient	30 mg (bio-strength)	15 mg	Difference in percentage in each RCE between 30 mg and 15 mg
Hypromellose, E4M CR	66.67% (80mg)	43.75% (35 mg)	-22.92%	Hypromellose, 2910	67.50% (81 mg)	42.50% (34 mg)	-25.00%
Hypromellose, K100 LV CR	33.33% (40 mg)	56.25% (45 mg)	22.92%	Hypromellose, 2208	32.50% (39 mg)	57.50% (46 mg)	25.00%
Total Weight of RCEs	120 mg	80 mg		Total Weight of RCEs	120 mg	80 mg	
Total Difference of RCEs		45.84%	Total Difference	of RCEs		50.00%	

Demonstrating BE for 15 mg between Test and RLD Products

Dissolution Data Comparison

Dissolution Testing	F2 Values					
	Test 15 mg vs 30 mg	RLD 15 mg vs 30 mg	Test 15mg vs RLD 15 mg	Test 30 mg vs. RLD 30 mg		
FDA Method (QC Method)	39.09	37.60	65.2	78.4		
0.1 N HCl	78.2	52.3	51.8	62.5		
pH 4.5 Acetate Buffer	50.1	63.5	52.4	57.1		
pH 6.8 Phosphate Buffer	34.5	39.7	85.6	75.2		

Based on the totality of the evidences (acceptable BE studies on bio-strength, and similar dissolution and formulation patterns observed in test and RLD products when comparing lower strength to bio-strength), 15 mg strength of the test product is deemed bioequivalent to the corresponding 15 mg strength of RLD product.

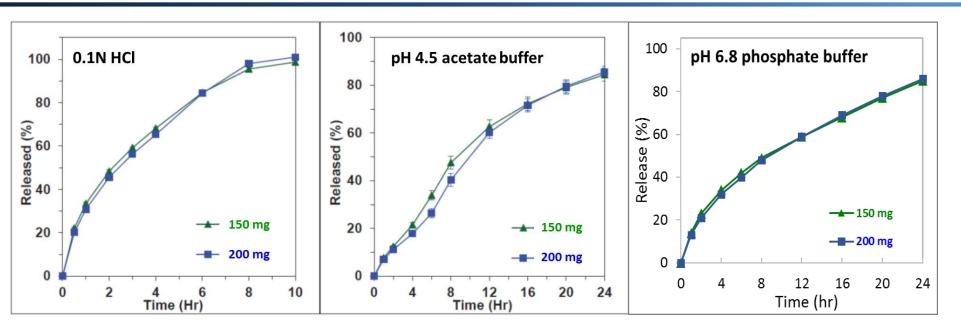
Case Study-B5

(Compositionally proportional formulation failed to yield desirable dissolution profiles)

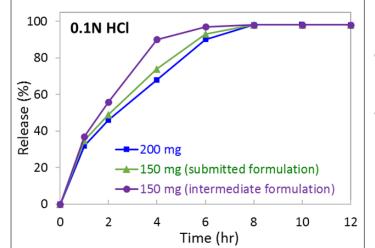
Test Formulations

Ingredient	Function	200 mg (bio	o-strength)	150 mg (submitted formulation)	
Ŭ		mg/tablet	% w/w	mg/tablet	% w/w
ΑΡΙ		200	38.5	150	38.6
НРМС К4М	Rate controlling polymer	49.5	9.5	47.4	12.2
НРМС К100М	Rate controlling polymer	88	16.9	66	17.0
Lactose	Filler	56.7	10.9	37.4	9.6
MCC	Filler	117.3	22.6	82.2	21.1
Magnesium Stearate	Lubricant	8	1.5	6	1.5
	Total	519.5	100	389	100

Formulation Evaluation



% Difference in NRCE		200 mg		150 mg (submitted formulation)		% Difference between 200 mg and 150 mg
NICL		mg/tablet	% (Tablet wt.)	mg/tablet	% (Tablet wt.)	%
	Lactose	56.7	10.9	37.4	9.6	-1.3
	MCC	117.3	22.6	82.2	21.1	1.4
	Magnesium stearate	8	1.5	6	1.5	0.0
	Total difference					2.7


% Difference in RCE

200 mg		150 mg (submitted formulation)		% Difference between 200 mg and 150 mg
mg/tablet	% (total RCE)	mg/tablet	% (total RCE)	%
49.5	36.0	47.4	41.8	5.8
88	64.0	66	58.2	-5.8
				11.6
	mg/tablet 49.5	mg/tablet $\begin{cases} \% \\ (total RCE) \end{cases}$ 49.5 36.0	Zoo mg(submitted fmg/tablet% (total RCE)mg/tablet49.536.047.4	200 mg(submitted formulation)mg/tablet% (total RCE)mg/tablet% (total RCE)49.536.047.441.8

Dissolution _200 mg vs. 150 mg

Similarity factor (f2) ranges from 70 to 93 under different dissolution media comparing 150 mg to 200 mg strengths

- Dissolution profiles of the 200 mg, 150 mg (submitted formulation) and 150 mg (intermediate formulation)
- The 150 mg (intermediate formulation) strength was compositionally proportional to the 200 mg strength but exhibited much faster dissolution rate

Fasting BE study

	Ratio (T/R)	90% Cl
AUC _{0-t} (ng∙hr/ml)	1.07	102.0 - 112.8
AUC _{0-inf} (ng∙hr/ml)	1.08	102.0 - 113.4
C _{max} (ng/ml)	1.03	93.3 - 113.1

Fed BE study

	Ratio (T/R)	90% Cl
AUC _{0-t} (ng∙hr/ml)	0.98	91.2 - 104.8
AUC _{0-inf} (ng·hr/ml)	0.98	91.5 - 105.1
C _{max} (ng/ml)	1.00	91.6 - 108.6

BE Justification for the 150 mg Strength

- The BE of test 150 mg strength to the corresponding reference product strength was demonstrated based on:
 - a) During the product development, the formulation of the 150 mg strength (intermediate formulation) was compositionally proportional to that of the 200 mg strength. However, the % drug release of 150 mg strength (intermediate formulation) is much faster than that of the 200 mg formulation.
 - b) The dissolution profiles of the submitted formulation for the 150 mg strength and the 200 mg strength in multimedia are comparable (f2 > 50).
 - c) The 90% CI for PK parameters (i.e., AUC, C_{max}) between the test and reference of the 200 mg strength in both fasting and fed BE studies were well within the acceptance limit of 80.00% 125.00% and were not marginal.
 - d) The total additive difference on RCE between the 200 mg and submitted 150 mg strengths is not substantially higher than the acceptable limit.

Conclusions

- Formulation evaluation across strengths involves separate assessment of the differences in RCEs and NRCEs.
 - Assessment of RCEs through DOE studies facilitates justifications of formulation similarity.
- Multiple factors need to be taken into considerations to use alternative methods to support BE for additional strengths of oral MR products under 21 CFR 320.24(b)(6)—a totality of evidence approach.
 - Formulation composition
 - Release mechanism
 - Dissolution comparison
 - BE data of bio-strength

Acknowledgements

- Robert Lionberger
- Lei K Zhang
- Myong-Jin Kim
- Yih Chain Huang
- Sue-Chih Lee
- Heather Boyce
- Sanjida Mahjabeen

- Bing Li
- Ethan Stier
- Utpal Munshi
- Ke Ren
- Chandra Chaurasia
- Zhen Zhang