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Overview

• Dry power inhalers (DPI) deliver active pharmaceutical ingredients 

(API) to human airways and lungs

• API particles are small (<5 𝛍m), cohesive and hard to fluidize

• Larger lactose particles (~70 𝛍m) are used as API carriers

• Inhalation fluidizes powder and releases API fragments

• Fragments smaller than 5 𝛍m are delivered to lungs

Particles > 5 𝛍m will deposit at 

turning or bifurcation of airway 

due to their large inertia [1]

[1] Lee et al., AAPS J., 11(3), 414 (2009) 

Deagglomeration due to wall-

collision releases API 
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Fine Particle Fraction

• The amount of drug delivered depends on the fraction of API 

released, characterized by Fine Particle Fraction (FPF)

Inhaler geometry

Inter-particle 

interactions

Gas-particle interactions

𝐹𝑃𝐹 ≡
𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝐴𝑃𝐼 𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑠 < 5𝛍m

𝑡𝑜𝑡𝑎𝑙 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝐴𝑃𝐼 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠

[2] Tong et al., Chem Eng J. 164, 432 (2010) 



Modeling Complex Particle Interactions in Dry Powder Inhaler 
Based Drug Delivery
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Project objectives

• Assemble a simulation platform to follow the transport of carrier and api 

particles (Accomplished )

• Evaluate strategies to speed the computations up: track only representative 

api particles (Accomplished ) (Xiaoyu Liu’s talk – same session)

• Explore how inter-particle forces affect release fractions through 

agglomerate-wall collisions and DPI simulations

• Validate the code and use it to assess effect of DPI device geometry on RF 

and FPF (Current talk)



Numerical Method: CFD-DEM

Validation: Comparison with experiments

Effect of Initial conditions 

Effect of geometry

Conclusion 

Presentation plan
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Methodology

Computational Fluid Dynamics

(CFD): OpenFOAM®

Fluid motion

Interface: CFDEMcoupling®

Gas-particle
interaction

Mapping and 
Interpolation

Discrete Element Method

(DEM): LIGGGHTS®
Particle-particle /wall 

interactions

• Turbulence model

• Drag model
• Turbulent dispersion model

• Contact forces
• Rolling friction
• Van der Waals cohesion
• Coulombic  interaction and 

dielectric polarization
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Code validation

Measuring evacuation times:

 5x5x300 mm channel

 Many flow rates 9000 ≤ 𝑅𝑒 ≤ 23000
 Carrier only particles

 Diameter = 70 µm

 Number ≈ 0.5 M

 LES Dynamic Smagorinsky

Direct comparison with experiments

* Mahmoudi, S., et al. Experimental Thermal and Fluid Science 103 (2019): 201-213.

Illustration of channel experimental setup with cavity assembly

Flow direction

Re =18500 Re =20300 Re =22500

Experimental time [s] * 0.47 0.406 0.346

Simulations time [s] 0.48 0.36 0.326

Powder emptying times

Lactose powder fluidization in turbulent channel
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Gas inlet

Outlet

Initial conditions sensitivity: effect of dose loading

Carrier (70 𝛍m) and API (5 𝛍m) 

particles are inserted and allowed to 

agglomerate and settle in this region

Dosage = 3.5mg

Simulation geometry

Fine particle fraction 

is analyzed at outlet

[3] Nguyen et al., Int J Pharmaceut, 57, 31 (2018)

[4] van Wachem, et al. AIChE Journal 63.2 (2017): 

501-516.
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Initial conditions sensitivity: effect of particles settling

Case 1 Case 2 Case 3 Case 4

Stats of coupled CFD-DEM simulations

Released API Fraction 

Fine  Particle Fraction 

0.190

0.109  

0.336

0.235

Case 1 Case 2 Case 3 Case 4

0.407 

0.288  

0.412

0.285  

3.5 mg dose: 13,000 carrier particles and 150,000 representative api particles 



10

Initial conditions sensitivity: effect of particles settling

Side view Outlet view

Macroscopic dynamics

• Drag force on pile is affected by its initial shape 

• Flatter pile gets defragmented more easily

• Small fragments undergo more wall collisions

• Smaller fragments spend more time in the inhaler than the bigger ones
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Effect of device geometry on the fine particle fraction

Geometry A Geometry B

Geometry C Geometry D

Geometry E Geometry F

How could the device geometry be modified to enhance wall collisions?
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Effect of device geometry on the fine particle fraction

Geometry A Geometry B

Geometry C Geometry D

Geometry E Geometry F

FPF = 7% FPF = 70% 

FPF = 71% 

FPF = 68% 

FPF = 59% 

FPF = 88.1% 

How could the device geometry be modified to enhance wall collisions?
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Effect of device geometry on the fine particle fraction

Probing the initial conditions effect with the modified device geometry and

their effect on the FPF

FPF ~ 88%

FPF ~ 87.2%

FPF ~ 86.9%
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• CFDEM code was validated against experimental data

• Dose loading method was found to affect the FPF in simple 
DPI geometry

• Device geometry modifications can significantly enhance 
agglomerate wall collisions, leading to larger FPF and 
decreased sensitivity to dose loading method

Summary
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