

Powder Fluidization in Dry Powder Inhalers

Mostafa Sulaiman¹, Xiaoyu Liu¹, Jari Kolehmainen¹, Ali Ozel² and Sankaran Sundaresan¹ ¹ Princeton University, ² Heriot Watt university

Session: Particle Technology in Product Design Nov 20, 2020

Overview

- Dry power inhalers (DPI) deliver active pharmaceutical ingredients (API) to human airways and lungs
- API particles are small (<5 μ m), cohesive and hard to fluidize
- Larger lactose particles (~70 μ m) are used as API carriers
- Inhalation fluidizes powder and releases API fragments
- Fragments smaller than 5 μ m are delivered to lungs

Fine Particle Fraction

The amount of drug delivered depends on the fraction of API released, characterized by Fine Particle Fraction (FPF)

Modeling Complex Particle Interactions in Dry Powder Inhaler Based Drug Delivery

Project objectives

- Assemble a simulation platform to follow the transport of carrier and api particles (Accomplished
)
- Explore how inter-particle forces affect release fractions through agglomerate-wall collisions and DPI simulations
- Validate the code and use it to assess effect of DPI device geometry on RF and FPF (Current talk)

Presentation plan

Methodology

Code validation

Direct comparison with experiments

Measuring evacuation times:

- 5x5x300 mm channel
- Many flow rates $(9000 \le Re \le 23000)$
- Carrier only particles
- Diameter = 70 µm
- Number ≈ 0.5 M
- LES Dynamic Smagorinsky

Lactose powder fluidization in turbulent channel

Flow direction

Powder emptying times

	Re =18500	Re =20300	Re =22500
Experimental time [s] *	0.47	0.406	0.346
Simulations time [s]	0.48	0.36	0.326

* Mahmoudi, S., et al. *Experimental Thermal and Fluid Science* 103 (2019): 201-213.

Illustration of channel experimental setup with cavity assembly

Initial conditions sensitivity: effect of dose loading

Initial conditions sensitivity: effect of particles settling

3.5 mg dose: 13,000 carrier particles and 150,000 representative api particles

Stats of coupled CFD-DEM simulations

	<u>Case 1</u>	Case 2	Case 3	Case 4
Released API Fraction	0.412	0.407	0.190	0.336
Fine Particle Fraction	0.285	0.288	0.109	0.235

Initial conditions sensitivity: effect of particles settling

Macroscopic dynamics

- Drag force on pile is affected by its initial shape
- Flatter pile gets defragmented more easily
- Small fragments undergo more wall collisions
- Smaller fragments spend more time in the inhaler than the bigger ones

How could the device geometry be modified to enhance wall collisions?

How could the device geometry be modified to enhance wall collisions?

Probing the initial conditions effect with the modified device geometry and their effect on the FPF

Summary

- CFDEM code was validated against experimental data
- Dose loading method was found to affect the FPF in simple DPI geometry
- Device geometry modifications can significantly enhance agglomerate wall collisions, leading to larger FPF and decreased sensitivity to dose loading method

FDA U.S. FOOD & DRUG