Nanomedicine Pharmacokinetics and Bioanalytical Methods to Measure Drug Release

11th World Drug Delivery Summit Oct. 16-18, 2017, Baltimore, MD Stephan Stern, Ph.D., DABT

NCI Alliance for Vanotechnology in Cancer stephan.stern@nih.gov

http://ncl.cancer.gov

2

Nanomedicine Generics

The First Nanomedicine generic

 Sun Pharma's doxorubicin (DXR) HCI liposome, a generic version of Doxil, was the first generic nanomedicine approved by the FDA (2013).

Nanomedicines are complex formulations, and there will always be some degree of polydispersity and batch-to-batch variation. For generic versions, the challenge is to identify meaningful differences between the follow-on and the reference/innovator product.

More Nanomedicine generics are Coming

- Azaya has bioequivalence study underway now with a generic Doxil formulation, ATI-0918.
- Nantworks also has an ongoing bioequivalence study for a nab-paclitaxel alternative IG-001.

As the number of FDA-approved nanomedicines continues to grow, the importance of developing a framework for evaluation of follow on versions of these treatments becomes increasingly important.

Nanomedicine Pharmacokinetics

Bekersky et. al, Antimicrob Agents Chemother 2002, 46(3):834-40.

NCI Alliance for

boraton

Nanotechnology

Case Study: Doxil "Stealth" Liposomes

Radiolabel studies demonstrate slow release of encapsulated drug in mice

Encapsulated drug dominates clinical systemic profile

Liposome encapsulated DXR dominates the Doxil plasma profile, decreasing systemic free drug concentrations.

Distribution of Doxil "Stealth" Liposomes

Doxil "Stealth" liposomes with encapsulated drug distribute primarily to MPS, but importantly also to tumor and skin.

Nanomedicine Bioequivalence

As per EMA/FDA guidance, nanomedicine bioequivalence is based on PK of total, unencapsulated and encapsulated drug fractions.

Ambardekar and Stern. NBCD Pharmacokinetics and Bioanalytical Methods to Measure Drug Release. In Daan Crommelin D and de Vlieger J (ed) Non-Biological Complex Drugs; the science and regulatory landscape. Springer, New York, NY; 2015.

Existing Fractionation Plasma Methods

- Process induced artifacts
- Difficult to accurately differentiate protein bound and encapsulated API

Current methods have inherent flaws, adding inaccuracy and variability to nanomedicine fraction quantitation.

NBCD Pharmacokinetics and Bioanalytical Methods to Measure Drug Release. In Daan Crommelin D and de Vlieger J (ed) Non-Biological Complex Drugs; the science and regulatory landscape. Springer, New York, NY; 2015.

DXR HCI Liposome SPE Fractionation

NCI Alliance for Nanotechnology Characterization Laboratory

Advantages

• Fast separation

Disadvantages

- Sample dilution
- Non-equilibrium conditions
- Process-induced drug release that can contaminate unencapsulated drug concentration

NBCD Pharmacokinetics and Bioanalytical Methods to Measure Drug Release. In Daan Crommelin D and de Vlieger J (ed) Non-Biological Complex Drugs; the science and regulatory landscape. Springer, New York, NY; 2015.

- Validation samples and standard curves are developed at low encapsulated:free drug ratios ~5:1 (e.g, 100:20 μg/mL to 50:10 ng/mL).
- Actual encapsulated:free drug ratios measured in patient samples are much higher: 100:1+!
- Process induced drug release is accounted for in the standards, but not unknowns.

Company	Test Formulation	Reference Formulation	Dose	Patient Population	Ν
Sun Pharma	Generic DXR HCI Liposome	Caelyx (J&J)	50 mg/m²	Advanced Ovarian Cancer	24
Company X	Generic DXR HCI Liposome	Caelyx (J&J)	50 mg/m²	Advanced Ovarian Cancer	49-50

* Both studies are single-blind, randomized, two-way, cross over designs

Company	Encapsulated AUC _{0-inf} (mgxh/mL)	Unencapsulated AUC _{0-inf} (mgxh/mL)	Encapsulated C _{max} (mg/mL)	Unencapsulated C _{max} (mg/mL)
Company X	5140	243	47	3.73
Sun Pharma	3,848	36	33	0.323
Fold difference	1.3x	6.75x	1.4x	11.5x

Current fractionation methods to measure unencapsulated drug do not appear accurate.

European Medicines Agency (EMA), Committee for Medicinal Products for Human Use (CHMP) (2011a) CHMP Assessment Report: Doxorubicin Sun.

Improvement of Ultrafiltration Method

NBCD Pharmacokinetics and Bioanalytical Methods to Measure Drug Release. In Daan Crommelin D and de Vlieger J (ed) Non-Biological Complex Drugs; the science and regulatory landscape. Springer, New York, NY; 2015.

Novel Stable Isotope Tracer Method to Measure Nanomedicine Drug Fractions

- The stable isotopically labeled drug (D*) equilibrates with protein and unlabeled, normoisotopic drug (D) released from nanomedicine (NM) formulation.
- % D*bound estimation gives reliable prediction of %D bound.

Commentary: When is it Important to Measure <u>Unbound</u> Drug in Evaluating Nanomedicine Pharmacokinetics?

- When unbound drug is in equilibrium with the formulation bound drug, and unbound drug fraction may change as a function of formulation (e.g. micellar systems)
- When unbound drug is the unencapsulated drug, e.g. Abraxane®

FDA-NCL Interagency Agreement: Evaluation of Stable Isotope Tracer Method

Interagency agreement to evaluate the stable isotope tracer method for determination of generic nanomedicine bioequivalence.

Free DXR was recovered within 10% of theoretical, with CV<5%.

Process and Spike Controls - Results

- Samples tested at an encapsulated:free DXR drug ratio of 1000!
- Double processing (spin) did not alter the unencapsulated DXR estimate
- The 5 ng/mL spike recovery was within 20% of theoretical

Drug release for the two liposomal products were similar, ~2%.

Unencapsulated and encapsulated DXR profiles for the two liposomal products were similar.

TOST Bioequivalence Analysis

All PK parameters found to be equivalent, with 90%Cl of the test (Sun Pharma)/reference (Doxil) ratio within 80-125% by TOST, except for unencapsulated AUCall.

Comparison of Stable Isotope vs. SPE Methods

Important differences for stable isotope versus previous literature SPE methods:

- While encapsulated drug profiles were identical, unencapsulated drug concentrations are much lower (10-18 fold!)
- Slope of terminal phase for unencapsulated drug is much flatter, and does not paralell the encapsulated drug profile
- Tmax is much later 33h vs ~4h, for stable isotope vs. SPE, respectively

* Caeylx study in rats at 6 mg/kg i.v. bolus, Azaya Therapeutics, AAPS abstract 2013

** Caelyx study in male SD rats 10 mg/kg i.v. bolus, Sun Pharma, Cancer Chemother Pharmacol (2017) 79:899-913

Comparison of Stable Isotope vs. SPE Methods

Which unencapsulated drug profile is more reasonable, stable isotope or SPE method?

SPE estimated unencapsulated drug t1/2 is not reasonable.....

Liposomal drug release in tissue is similar to the stable isotope estimated t1/2...

Comparison of Stable Isotope vs. SPE Methods

Which unencapsulated drug profile is more reasonable, stable isotope or SPE method?

• SPE estimated Cmax is not reasonable......

Impossibly, SPE estimated unencapsulated DXR profiles have the same Cmax values as i.v. bolus rat studies of free, non-liposomal DXR, ~1-3 ug/mL.

In Summary

- The lack of robust nanomedicine fractionation methods are an impediment to both nanomedicine <u>characterization</u> and <u>nanomedicine generic development</u>.
- Higher quality pharmacokinetic data will decrease <u>patient</u> <u>sample size</u> and facilitate regulatory determination of <u>bioequivalence</u>.
- The NCI, in collaboration with the FDA, is supporting <u>development</u> and <u>validation</u> of highly accurate and precise nanomedicine fractionation methods.

Acknowledgements

Director

Stephan T. Mahmud, Ph.D. Stevens, Ph.D. Stern, Ph.D., DABT

Sarah Skoczen, M.S.

Kelsie Snapp, B.S., M.B.A.

Immunology

Marina A. Enping Dobrovolskaia, Hong, Ph.D. Ph.D., M.B.A., PMP

Cancer Biology

Barry W. Neun. B.S.

Ed Cedrone B.S.

Physicochemical Characterization

Jiewei

Wu, Ph.D.

Yingwen Hu. Ph.D.

Sonny Man, M.S.

David

Vermilya, M.S. Mankus, B.S.

Pavan Adiseshaiah, Ph.D.

Timothy M. Potter, B.S.

Ankit Shah,

Ph.D.

Kerr, M.S.

Alliance Management

Jennifer

Grossman. Ph.D.

Jeffrey D.

Clogston, Ph.D.

Rachael M.

Crist. Ph.D.

Maggie Scully, Ph.D.

Support/Admin.

Christopher B. Jamie Becky McLeland, B.S.Rodriguez, B.S. Schneider, B.S. M.B.A.

Supporting Labs

- Laboratory of Animal Science Program
- Pathology/ • Histotechnology Lab
- Electron Microscopy • Lab

Frederick National Laboratory or Cancer Research

