

In-vivo skin PK testing for new and generic topical dermatological drug development

Funding for this project was made possible, in part, by the Food and Drug Administration through grants U01FD004946-01 and 1U01FD005861-01. The views expressed in this abstract do not necessarily reflect the official policies of the Food and Drug Administration, the Department of Health and Human Services; nor does any mention of trade names, commercial practices, or organization imply endorsement by the United States Government.

THE INNOVATION COMPANY

www.joanneum.at

Introduction

Skin PK approaches Overview

Does blood really reflect your drug's PK/PD in the dermis?

Skin PK approaches Overview

Skin PK-based approaches are needed for

- Development of locally acting new drugs
 - Proof-of-mechanism
 - PK profile in target tissue
 - Lead compound development
 - Dose-response
 - Formulation optimization
 - Toxicity
 - PK-PD relationship
 - Linking pre-clinical to clinical data
 - **-** ...
- Development of locally acting generic drugs
 - PK-based clinical bioequivalence
 - Reduced costs, time and associated development risks

Introduction

Skin PK approaches Overview

Suction blister

Target tissue: interstitial fluid

- + quite easy to perform
- no continuous PK profile
- undefined compartment
- possible scar formation

Biopsies

Target tissue: whole skin

- + quite easy to perform
- no continuous PK profile
- high carry over
- invasive, possible scar formation

Tape stripping

Target tissue: Stratum Corneum

- + quite easy to perform
- + several time points for PK possible
- no continuous PK profile
- possible scar formation

RAMAN

Target tissue: SC, Epidermis, Dermis?

- + non-invasive
- + continuous PK profile
- low penetration depth into skin
- expensive instrumentation

Skin PK approaches Overview

Dermal Microdialysis

Target tissue: Interstitial Fluid

- + continuous PK profile
- + defined compartment
- + minimally invasive
- limited API spectrum due to membrane adsorption and size exclusion
- sampling time limited
- membrane associated effects
- requires standardization
- sensitive analytics needed

Dermal OFM

Target tissue: Interstitial Fluid

- + continuous PK profile
- + defined compartment
- + minimally invasive
- + entire API spectrum accessible
- + sampling time up to 48 h
- requires standardization
- sensitive analytics needed

Dermal Open Flow Microperfusion Vision

Vision: open a new way for PK-based bioequivalence studies using dOFM for topical generics

Skin PK-based BE approaches Overview

Strengths

- 1. Provide a direct in-vivo measurement of the rate and extent of the active moiety at or near the site of action in the dermis.
- 2. Evidence indicates that dermal sampling has the potential to differentiate pharmacokinetic profiles that correspond to the used concentrations.

Challenges

- 1. Robustness of continuous sampling methods
- 2. Sampling time of 24 hours and more are needed to get $\frac{3}{4}$ of AUC and C_{max}
- 3. Highly variable skin penetration

✓ OFM samples represent <u>diluted but unfiltered</u> interstitial fluid

CE-certified for clinical use

All drugs are accessible in-vivo in the dermis

lipophilic substances

Bodenlenz et al. 2016 (CP-17; logP 3.5) Holmgaard et al. 2011 (Fentanyl; logP 4.5)

high molecular weight

substances (up to cells)

Dragatin et al. 2016 (Quantification of antibodies in skin)

✓ dOFM shows dose dependent dermal AUC profiles

Clinical dOFM studies in skin:

Acyclovir (topical) -36 h clinical Corticoid (topical) -26 h clinical Antibody (SC) -17 h clinical

✓ dOFM drug concentration is dose dependent

✓ dOFM has a potential for clinical BE studies

Strengths

- 1. Provide a direct in-vivo measurement of the rate and extent of the active moiety at or near the site of action in the dermis.
- 2. Evidence indicates that dermal sampling has the potential to differentiate pharmacokinetic profiles that correspond to the used concentrations.

Challenges

- 1. Robustness of continuous sampling methods
- 2. Sampling time of 24 hours and more are needed to get $\frac{3}{4}$ of AUC and C_{max}
- 3. Highly variable skin penetration

Clinical Bioavailability Overall Approach

Overall AIM: Investigate the capability of dOFM to address BE and non-BE of topical formulations in-vivo.

- Head-to-Head comparison to minimize inter-subject variability
- Use application-triplets with
 - Two separate application sites for the reference \rightarrow for BE
 - One application site for a Q1 different drug \rightarrow for non-BE
- Healthy subjects as a model for the most discriminating study population
- Use of a drug for which skin PK was never successfully monitored in healthy subjects

dOFM Performance

dOFM Controlled or Monitored Parameters

 Control for all significant contributing factors adding to data variability or at least monitor it!

Variations may result from differences in

→	not controlled, but counted on photos
→	subjects are shaved 5 days before dOFM visit
→	not controlled
→	monitored by TEWL and impedance
→	not allowed 5 days before dOFM visit
→	visual check at screening visit
→	controlled at 22 \pm 1° C ; 40 - 60% rel. humidity
	

dOFM Trauma formation

✓ Minimize trauma formation by cooling

Variations may result from differences in

Trauma formation

Application site Dosage application Probe depth Flow rate Local blood flow Lateral diffusion and cross-talk Systemic absorption and cross-talk

Standardized by cooling after dOFM insertion

dOFM Drug application

✓ Homogeneous drug application by application template

Variations may result from differences in

Trauma formation **Application site Dosage application** Probe depth Flow rate Local blood flow Lateral diffusion and cross-talk Systemic absorption and cross-talk

Standardization by use of application template

dOFM Probe depth

✓ dOFM probe depth measure for each probe

Variations may result from differences in

Trauma formation Application site Dosage application **Probe depth** Flow rate Local blood flow Lateral diffusion and cross-talk Systemic absorption and cross-talk

Total exchange area measured by US

dOFM Flow rate

✓ Stable flow rate of dOFM probes over 36 hours

Variations may result from differences in

Trauma formation Application site Dosage application

Probe depth

Flow rate

Local blood flow

Lateral diffusion and cross-talk

Systemic absorption and cross-talk

left leg

Flow rates of all probes in one subject

dOFM Local blood flow

✓ Monitoring of local blood flow by adding internal standard to OFM perfusate

Variations may result from differences in

Trauma formation Application site Dosage application Probe depth Flow rate **Local blood flow** Lateral diffusion and cross-talk

Systemic absorption and cross-talk

Local blood flow by loss of glucose from dOFM perfusate

dOFM Systemic adsorption and cross-talk

$\checkmark\,$ No systemic exposure and thus no influence on PK at dOFM site

Test for Systemic Exposure

 $R = \frac{|\#Blood Samples > LLOD|}{|\#Total Blood Samples|}$

- **Definition:** no systemic exposure if R < 0.05
- Methodology
- 6 subjects, 6 application sites
- 10,000 bootstrap estimates were computed
- creation of confidence interval for the true population value of the test statistic R
- a one-sided 95% confidence interval was constructed

Results

MIN	MEDIAN	P90	P95	P99	MAX
0	0.012821	0.025641	0.038462	0.051282	0.064103

US Zovirax Extremely high dose of 50 mg/cm²

dOFM Controlled or Monitored Parameters

✓ Highly controlled set-up developed – is a pre-requisite for validated set-up!!

Variations may result from differences in

Trauma formation	→	Controlled by cooling
Application site	→	Controlled by application template
Dosage application	→	Controlled by standardization
Probe depth	→	Monitored by ultrasound
Flow rate	→	Monitored by sample weight
Local blood flow	→	Monitored by glucose marker
Lateral diffusion and cross-talk	→	Negligible
Systemic absorption and cross-talk	→	No systemic exposure

Clinical Bioavailability Clinical BE Study

Overall AIM: Investigate the capability of dOFM to address BE and non-BE of topical formulations in-vivo.

Overview Clinical Studies:

- 20 healthy subjects
- Reference: Zovirax [®] US
- Test: Aciclovir-A1 Pharma Austria
- 2 application-triplets per subject
- 15 mg/cm² drug application
- 36 hours dOFM sampling time

dOFM Clinical Study Details

✓ Test and Reference are both 5% acyclovir creams but NON-Q1 ✓ IVRT: identical release R:R and non identical release T:R

Zovirax (R) (USA)	Aciclovir-1A (Austria)		Computed	
Water	Water	Equivalence comparison	conndence	
Propylene glycol	Propylene glycol		interval	
Mineral oil	Viscous Paraffin		Lower	Upper
White petro	Wife Vaseline			Limit
Cetostearyl alcohol	Cetyl alcohol			
SLS	Not disclosed	Zovirax cream 5% US v. Zovirax cream 5% US	85.7	103.02
Poloxamer 407	Not disclosed			
Not disclosed	Dimethicone	Zovirax cream 5% US v. Aciclovir 1A Pharma Cream 5%	16.27	19.60
Not disclosed	Glyceryl Mono Stearate	Accontance limite:	[750/ 12	2 220/1
Not disclosed	Polyoxyethylene stearate	Acceptance minits.	[/5/0, 13	JJ.JJ /0]

dOFM Clinical Study Details

✓ Clinical BE study design

Ultrasound GE-Healthcare

Clinical Bioavailability Clinical BE Study

✓ All procedures are standardized by using templates and SOPs

dOFM BE Study

Clinical Bioavailability Test versus Reference

✓ Bioavailability: AUC and T_{max} of Aciclovir A1 are highly reproducible AUC and T_{max} of Zovirax US are highly reproducible

dOFM acyclovir concentrations as a function of time Mean +/- SE (across all limbs)

20 healthy subjects

Pharmacokinetics-Based BA Approaches

dOFM BE Study

Clinical Bioavailability Test versus Reference

✓ BA is different for Aciclovir 1A vs Zovirax US based on AUC
✓ BA is different for Aciclovir 1A vs Zovirax US based on C_{max}

Outcome variable	Cl _{90%}	BE-limits	Cl _{90%} within BE-limits	
log(AUC0-36h)	[-0.369 ; 0.050] or [69.1 % ; 105.2 %]	[-0.223 ; 0.223]	x Failed	
log(C _{max})	[-0.498 ; 0.022] or [60.8 % ; 102.2%]	[80% ; 125%]	x Failed	

BA is tested for the difference of the log-transformed outcome variables (AUC, C_{max}) between test and reference condition

BA is established if $CI_{90\%}$ falls within the limits of log(0.8)=-0.223 and log(1.25)=0.223 (cf. FDA Guidance For Industry)

dOFM BE Study

Clinical Bioavailability Reference versus Reference

✓ Bioavailability: AUC and C_{max} of Zovirax US are highly reproducible

20 healthy subjects

Pharmacokinetics-Based BA Approaches

"Open Flow Microperfusion as a Dermal Pharmacokinetic Approach to Evaluate Topical Bioequivalence" Clin. Pharmacokinet. 8/2016 – OPEN ACCESS

Clinical Bioavailability Reference versus Reference

✓ Same BA for Zovirax US vs Zovirax US based on AUC ✓ Same BA for Zovirax US vs Zovirax US based on C_{max}

Outcome variable	Cl _{90%}	BE-limits	Cl _{90%} within BE-limits
log(AUC0-36h)	[-0.148 ; 0.162] or [86.2 % ; 117.5 %]	[-0.223 ; 0.223]	passed
log(C _{max})	or [-0.155 ; 0.190] [80% ; 125%] or [85.7 % ; 120.9%]		passed

BA is tested for the difference of the log-transformed outcome variables (AUC, C_{max}) between the two reference conditions

BA is established if $CI_{90\%}$ falls within the limits of log(0.8) = -0.223 and log(1.25) = 0.223 (cf. FDA Guidance For Industry)

Skin penetration insights Total variability

✓ dOFM has a low total and intra-subject variability

Total $\text{CV}_{\text{logAUCacyc}}$ was **39-44%**

Total variability (ANOVA)

Inter-subject variability: 84-91% OFM

Intra-subject variability: 9-16% OFM

(40-93% Microdialysis Benfeld et al.)

(61% Microdialysis Benfeld et al.)

(39% Microdialysis Benfeld et al.)

THE INNOVATION COMPANY

Benfeldt et, J Invest Dermatol. 2007 Jan;127(1):170-8. Epub 2006 Jul 27

33

Ex-vivo BE Repetition of the in-vivo dOFM BE study in ex-vivo skin

 Investigate the usability of open flow microperfusion (OFM) for bioequivalence (BE) testing of topically applied drugs in excised human skin explants

- Measure dermal concentrations of two acyclovir products to assess their PK endpoints AUC and C_{MAX}
- BE evaluations using the average BE (ABE) and reference-scaled (SABE) statistical approach for following comparisons:

a) Positive control: Reference product against itselfb) Negative control: Reference product against a non-equivalent test product 34

Ex-vivo BE Study design

Topical application of two 5% acyclovir cream (15 mg/cm²):

- Continuous ISF sampling
 - T= -1–0 h: Baseline sampling from -1 0 h

40 full-thickness human skin explants (16 donors)

- T= 0 h: Topical application
- T= 0–36 h: Post dose sampling in 4 h intervals
- Controlled environmental conditions: 22±1°C, 40-60% RH
- Bioanalytical method: UHPLC-MS for quantification of acyclovir in ISF samples

36

Ex-vivo BE Concentration-time profiles

Ex-vivo BE BE Evaluations

SABE	PK endpoint	S _{WR}	Upper 95% bound of the scaled Cl	GMR	Passed
Postive	AUC _{0-36h}	0.68	-0.159	1.1771	
(R1 vs. R2)	C _{max}	0.60	-0.094	1.1918	•
Negative	AUC _{0-36h}	0.68	8.989	0.0764	x
(T vs.R1)	C _{max}	0.60	16.050	0.0293	

Pharmacokinetics-Based dOFM Summary

dOFM in-vivo

- Is a reproducible, accurate and sensitive method
- Shows very low method-variability
- Reflects in-vivo skin penetration in dermis
- Gives advanced skin penetration insights
- Is able to investigate BE on a dermato-pharmacokinetic basis

BE OFM set-up will be further optimized to a universal dermato-pharmacokinetic-based BE approach for topical drugs by carrying out more clinical studies

THE INNOVATION COMPANY

This presentation shows the status of our current work and may not represent final conclusions

dOFM Bioequivalence Outlook

dOFM Study 1: Moderate Lipophilic/Protein Bound Drugs (low amount, non-occlusive, infinite dose)

- Pilot: Assess parameters for the design of the subsequent BE study (n=6) \checkmark
- Main study: Identify influencing factors (n=20) planned spring 2019

dOFM BE Study 2: Moderate Lipophilic/Protein Bound Drugs (high amount, occlusive, finite dose)

- Pilot: Assess parameters for the design of the subsequent study (n=6) \checkmark
- Clearance study: assess systemic drug clearance (n=6) planned summer 2019
- Main study: Identify influencing factors (n=20) planned summer 2019
- dOFM BE Study 3: Highly Protein Bound Drug
 - Pilot: Assess parameters for the design of the subsequent study (n=6) planned for autumn 2019
 - Main study: BE study (n=20) planned for winter 2019

→ Show the potential of OFM as a universal tool for BE Studies for topical drugs

A big thanks to...

Katrin Tiffner IVRT and dOFM ex-vivo

Manfred Bodenlenz Clinical dOFM BE Study

Reingard Raml Analytics

Thomas Pieber Clinical PI

University of Graz

Isadore Kanfer **BE** Conultant Expert

Sam G. Raney FDA Project Officer

Priyanka Ghosh Bryan Newman Elena Rantou Youngsook Lee Lisa Ko **Jill Coker** and other....

Bernd Tschapeller Data Mangaement

THE INNOVATION COMPANY

.

Thomas Augsutin Statistics

More than 20 other persons

Thank you for your attention

