

Innovative dermal PK and PD

In-vivo proof of mechanism for clinical dermal bioequivalence using OFM

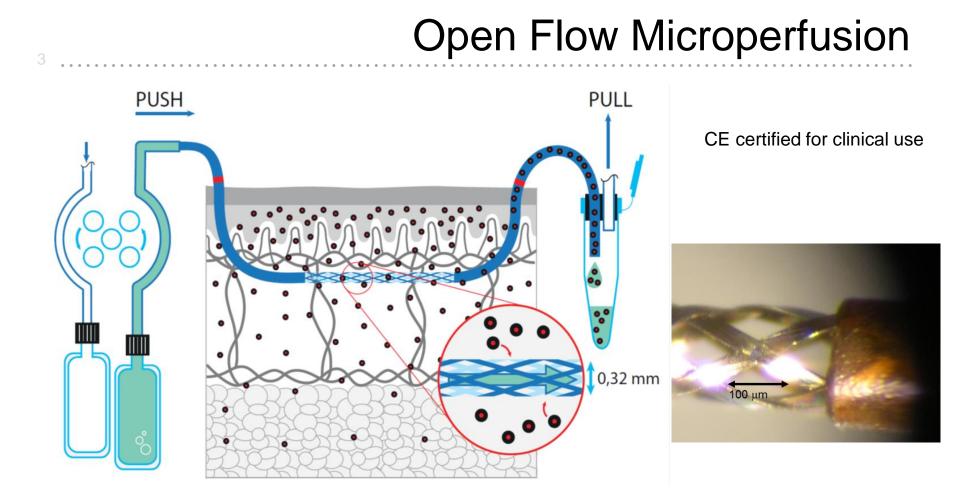
www.joanneum.at

Content

I. Introduction

Open Flow Microperfusion

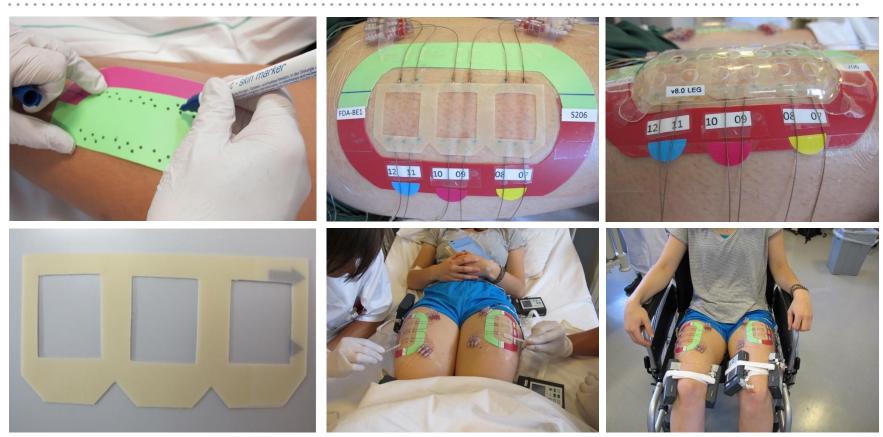
II. How dOFM can speed up your drug development process


Investigation of API stability iand metabolism in "pure" dermal ISF

- Investigation of API stability and metabolism of your API in the dermis
- Pre-clinical proof of mechanism for your API
- In-vivo PK and PD
- Bioequivalence

- → Ex-Vivo Model (NCE)
- ➔ Psoriasis Rat Model
- → Clinical Study (Secukinumab®)
- → Clinical Study (Acyclovir)

III. HEALTH – the scientific "one-stop-shop"



OFM samples represent diluted but unfiltered interstitial fluid

dOFM set-up

All procedures are highly standardized

Content

I. Introduction

✓ Open Flow Microperfusion

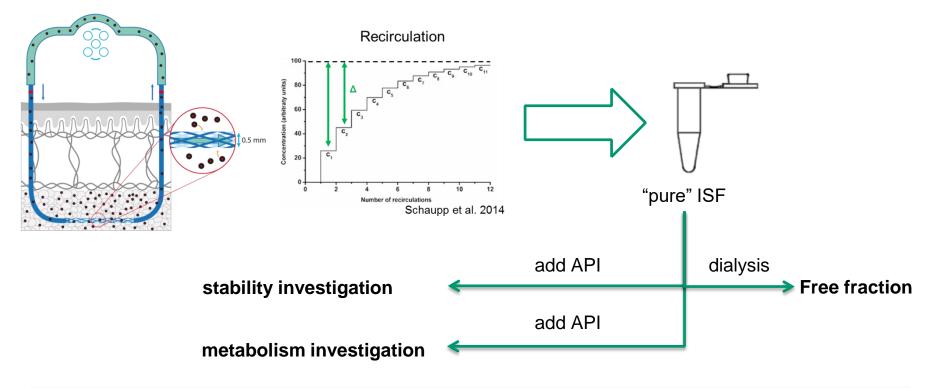
II. How dOFM can speed up your drug development process

Investigation of API stability iand metabolism in "pure" dermal ISF

- Investigation of API stability and metabolism of your API in the dermis
- Pre-clinical proof of mechanism for your API
- ✓ In-vivo PK and PD
- ✓ Bioequivalence

- → Ex-Vivo Model (NCE)
- Psoriasis Rat Model

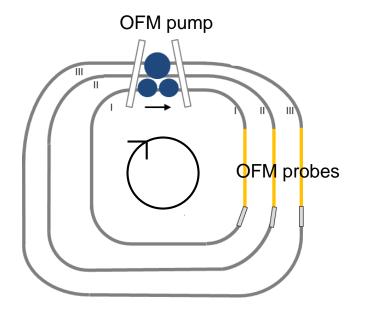
 \rightarrow


- Clinical Study (Secukinumab®)
 - Clinical Study (Acyclovir)

III. HEALTH – the scientific "one-stop-shop"

"pure" Interstitial Fluid Investigate your API in a realistic matrix

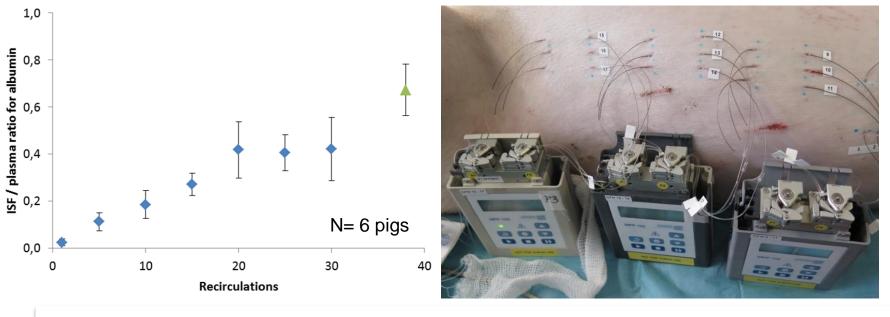
OFM recirculation is used to achieve an equilibrium between perfusate and interstitium.


API stability and degradation used for API design and toxicity

"pure" Interstitial Fluid Investigate your API in a realistic matrix

Recirculation of physiological saline in the anesthetized enabled sampling of

"pure" interstitial fluid (ISF) in pigs



"pure" Interstitial Fluid Investigate your API in a realistic matrix

- 20 recirculations are sufficient to achieve plateau phase for albumin
- Lymph showed higher albumin concentration than "pure" ISF
 - → Lymph represents a different compartement than interstitium

Recirculation-OFM is able to sample "pure" ISF

Content

I. Introduction

✓ Open Flow Microperfusion

II. How dOFM can speed up your drug development process

Investigation of API stability iand metabolism in "pure" dermal ISF

- Investigation of API stability and metabolism of your API in the dermis
- Pre-clinical proof of mechanism for your API
- ✓ In-vivo PK and PD
- ✓ Bioequivalence

- → Ex-Vivo Model (NCE)
- ➔ Psoriasis Rat Model

 \rightarrow

- → Clinical Study (Secukinumab[®])
 - Clinical Study (Acyclovir)

III. HEALTH – the scientific "one-stop-shop"

Prediction of Drug Effect

skin penetration and dermal metabolism

Case Study (Leo Pharma)1

AIM: Development of a topical drug for AD treatment which has

- high dermal API levels for drug effect (>EC50) and
- low systemic effect to reduce side effects (high systemic clearance)

→ PDE4 inhibitors with high in vivo clearance and adequate skin stability

API candidates:

- A: low Mw, LogD ~3, human unbound fraction ~2%, in vitro skin model: stable, EC50*
 ~80nM,
- B: low Mw, LogD ~3, human unbound fraction ~5%, in vitro skin model: stable, EC50*
 ~60nM, …

→ Both compounds show in-vitro activity and were selected for clinical development

*EC50 is based on in vitro inhibition of LPS induced TNFalpha release from human PBMCs

¹ unpublished results: from Leo Pharma: Maja Lambert, Stefan Eirefeldt, Fredrik Johansson, Line Hollesen Basse, Malene Bertelsen, Jens Larsen, Simon Feldbæk Nielsen

Prediction of Drug Effect

skin penetration and dermal metabolism

Case Study (Leo Pharma)1

Ex-Vivo Human Skin Punch Biopsies

- A: [API] > factor 10 higher than EC50
- **B**: [API] > factor 100 higher than EC50

→ Both compounds are good candidates for clinical evaluation

Clinical Trial

- A demonstrated clinical efficacy in AD patients (phase 2) in a 4 wk proof of concept study with twice daily dermal application of a cream formulation in different strengths of the cream vehicle and Elidel cream. Biopsy concentrations were determined at 10 µM.
- B showed now difference to cream vehicle in a clinical study with AD patients 3 wk with twice daily dermal application of cream formulation compared to cream vehicle. Biopsy concentrations were determined at 6 µM.

➔ Punch biopsies revealed API concentration well over EC50 but B showed no treatment effect.

¹ unpublished results: from Leo Pharma: Maja Lambert, Stefan Eirefeldt, Fredrik Johansson, Line Hollesen Basse, Malene Bertelsen, Jens Larsen, Simon Feldbæk Nielsen

Prediction of Drug Effect

skin penetration and dermal metabolism

Case Study (Leo Pharma)¹

Ex-Vivo Fresh Human Skin OFM Model

- Determination of 24 hour dermal concentration profile for API
- → Elimination of punch biopsy contamination due to remaining drug at SC
- → Focus on the relevant compartment → DERMIS to reflect effective API concentration

RESULTS

- A:[API] more than 10 fold lower compared to biopsies but higher than EC50
- B: [API] more than 10 fold **lower** compared to biopsies and below EC50

OFM allows a realistic determination of API PK profiles to predict clinical efficacy, essential in the absence of reliable biomarker

Content

I. Introduction

✓ Open Flow Microperfusion

II. How dOFM can speed up your drug development process

Investigation of API stability iand metabolism in "pure" dermal ISF

- Investigation of API stability and metabolism of your API in the dermis
- Pre-clinical proof of mechanism for your API
- ✓ In-vivo PK and PD
- ✓ Bioequivalence

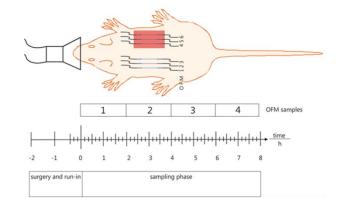
III. HEALTH – the scientific "one-stop-shop"

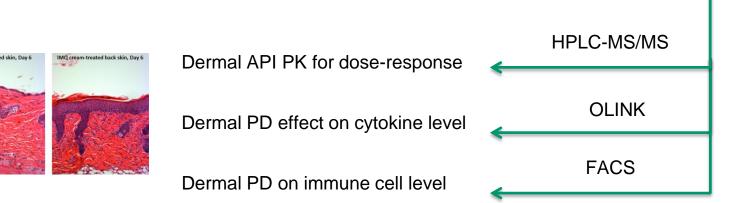
- → Ex-Vivo Model (NCE)
- ➔ Psoriasis Rat Model

 \rightarrow

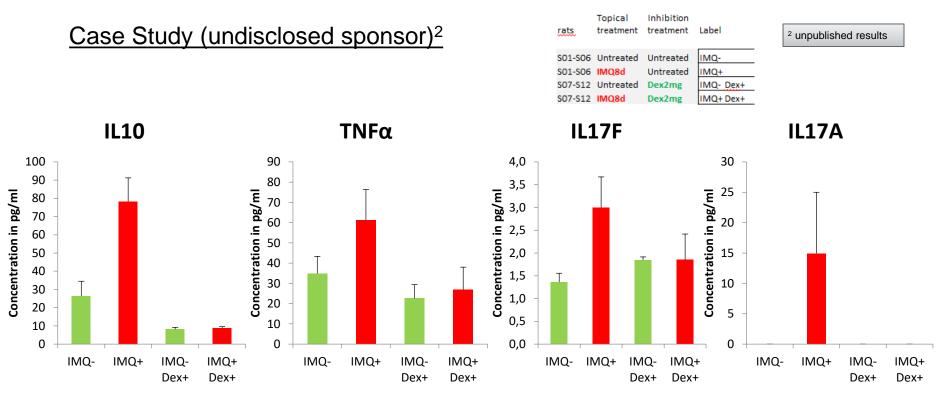
 \rightarrow

- Clinical Study (Secukinumab®)
- Clinical Study (Acyclovir)

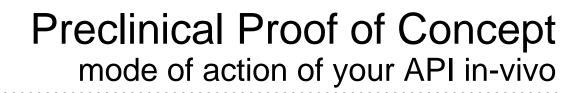


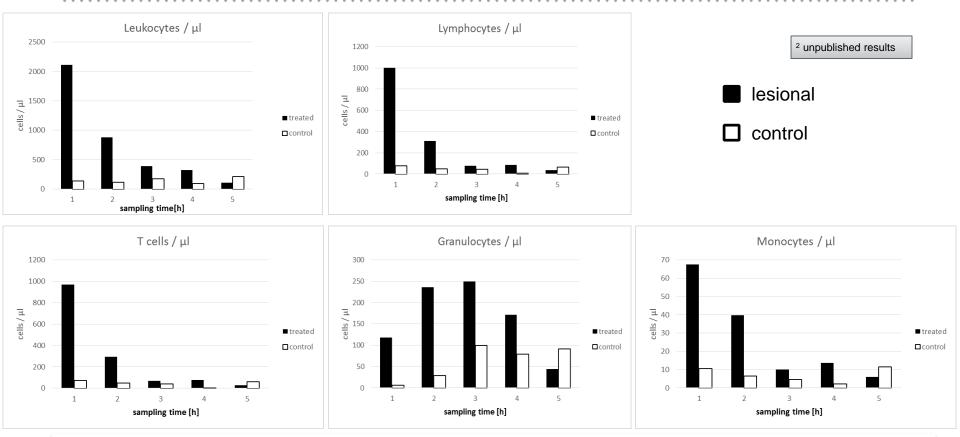

Preclinical Proof of Concept mode of action of your API in-vivo

Case Study (undisclosed sponsor)²



In-vivo effect of API on cytokine and immune cell level


Preclinical Proof of Concept mode of action of your API in-vivo



Data are mean ±SE, n=6; 8 days of treatment

IMQ-Rat Model is an in vivo model for psoriatic inflammation

This psoriasis animal model allows for PK and PD investigations

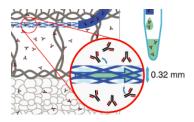
Content

I. Introduction

✓ Open Flow Microperfusion

II. How dOFM can speed up your drug development process

- Investigation of API stability iand metabolism in "pure" dermal ISF
- Investigation of API stability and metabolism of your API in the dermis

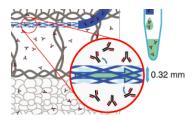

- Pre-clinical proof of mechanism for your API
- In-vivo PK and PD
- ✓ Bioequivalence

III. HEALTH – the scientific "one-stop-shop"

- → Ex-Vivo Model (NCE)
- Psoriasis Rat Model

 \rightarrow

- → Clinical Study (Secukinumab®)
 - Clinical Study (Acyclovir)



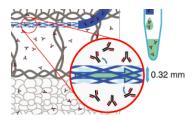
)+M

PK/PD of an Antibody Drug: Case Study Secukinumab

Background and Objectives

- Secukinumab, a fully human monoclonal antibody that selectively targets IL-17A, has demonstrated efficacy in phase 3 trials, within 16 weeks of initiation of treatment.
- The objective of this exploratory, single-center, open-label study (NCT01539213) was to further characterize the mechanism of action of secukinumab in the skin in
 - 8 healthy volunteers (Part 1)
 - 8 plaque psoriasis patients (Part 2)
- OFM was performed on Day 1, 8 and 15 in Part 1 and 2

)+M

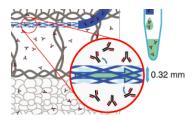

PK/PD of an Antibody-Drug: Case Study Secukinumab

Primary Aim

Absolute quantification of Secukinumab in the dermis of healthy volunteers and psoriatic patients

Secondary Aims

- Investigate that postulated signaling pathways are different in healthy and psoriatic patients in dermis - IL17a pathway
- Investigate postulated mode of action -down stream IL17a marker
- Investigate drug effect on a protein level mediator for keratinocyte proliferation and angiogenesis and keratinocyte mobility

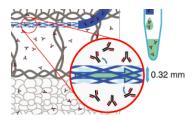


PK of an Antibody-Drug: Case Study Secukinumab

Primary Aim: Absolute quantification of secukinumab in the dermis of healthy volunteers and psoriasis patients

Serum and Dermal Secukinumab Levels (µg/mL, mean ± SD)					
Healthy Volunteers (n = 8)					
Serum		Dermal ISF ^{a,b}		Skin biopsy ^c	Blister fluid
Day 8	Day 15	Day 8	Day 15	Day 15	Day 15
36.1 ± 10.5	35.0 ± 10.5	7.76 ± 1.30	8.02 ± 3.23	10.40 ± 3.97	6.89 ± 2.26

Dermal ISF concentrations ~22% of serum Dermal concentration by OFM, blister fluid, biopsies are comparable.

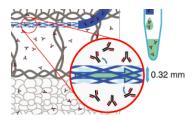


PK of an Antibody-Drug: Case Study Secukinumab

Primary Aim: Absolute quantification of Secukinumab in dermis in healthy volunteers and psoriatic patients

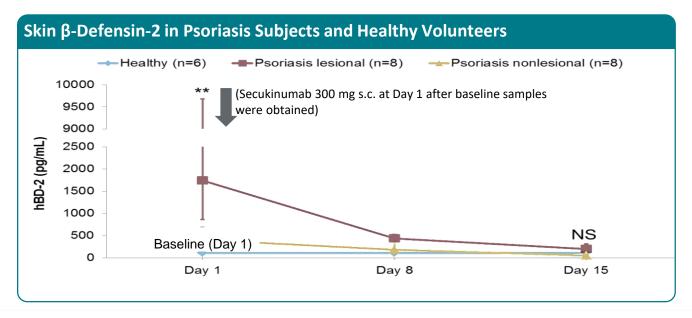
Serum and Dermal Secukinumab Levels (µg/mL, mean ± SD)						
Psoriatic Subjects (n = 8)						
Ser	um	Dermal ISF ^{a,b}				
David	Day 15	Day 8		Day 15		
Day 8		L	NL	L	NL	
21.1 ± 4.3	21.2 ± 4.9	6.76 ± 2.68	8.34 ± 3.35	5.65 ± 1.80	6.39 ± 3.35	

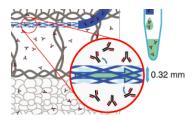

Dermal ISF concentrations are 28-39% of serum concentration. Dermal ISF concentrations on day 8 and day 15 are similar.



PD of an Antibody-Drug: Case Study Secukinumab

Secondary Aim: Investigate that postulated signaling pathways are different in healthy volunteers and psoriatic patients in dermis - IL17a pathway


IL-17A, but not IL-17F, is significantly higher in psoriatic lesional skin compared with non-lesional skin or skin of healthy volunteers



PD of an Antibody-Drug: Case Study Secukinumab

Secondary aim: Investigate postulated mode of action - downstream IL17a marker

ß-defensin-2 protein levels are elevated in psoriatic lesional skin and serum and decrease rapidly in response to secukinumab treatment

PK/PD of an Antibody-Drug: Case Study Secukinumab

Conclusions on Pharmakokinetics

- Substantial levels of secukinumab are observed in skin suggesting the potential for local action.
- Secukinumab ISF distribution into psoriasis lesional and non-lesional skin is similar and is higher than ISF distribution in healthy control skin.

Conclusions on Pharmakodynamics

- Key molecular factors and processes implicated in the pathophysiology of psoriasis were positively impacted in psoriatic skin within 7 days of treatment.
- Secukinumab concentration in skin is sufficient to neutralize IL-17a in psoriatic skin
- Secukinumab affected the expression of a number of pro-inflammatory cytokine

Content

I. Introduction

✓ Open Flow Microperfusion

II. How dOFM can speed up your drug development process

Investigation of API stability iand metabolism in "pure" dermal ISF

- Investigation of API stability and metabolism of your API in the dermis
- Pre-clinical proof of mechanism for your API
- ✓ In-vivo PK and PD
- Bioequivalence

III. HEALTH – the scientific "one-stop-shop"

- → Ex-Vivo Model (NCE)
- Psoriasis Rat Model
- Clinical Study (Secukinumab®)
- → Clinical Study (Acyclovir)

Bioequivalence FDA Project

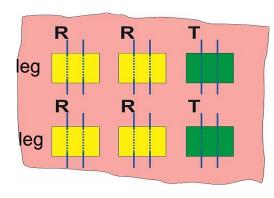
NOVEL METHODOLOGIES AND IVIVC APPROACHES TO ASSESS BIOEQUIVALENCE OF TOPICAL DRUGS

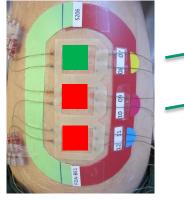
FDA grant: 1U01 FD004946-01

Institute for Biomedicine and Health Sciences JOANNEUM RESEARCH

Funding for this project was made possible, in part, by the Food and Drug Administration through grant U01FD004946-01. The views expressed in this abstract do not necessarily reflect the official policies of the Food and Drug Administration, the Department of Health and Human Services; nor does any mention of trade names, commercial practices, or organization imply endorsement by the United States Government.

Principal Investigator: Frank Sinner Project leader: Manfred Bodenlenz and Katrin Tiffner

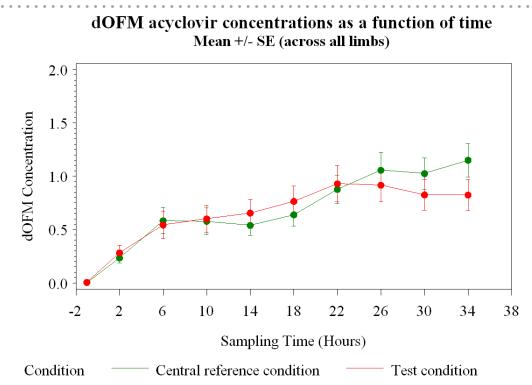



Bioequivalence Clinical Study

Overall AIM: Investigate the possibility of dOFM to address BE and non-BE of topical formulations in vivo and ex-vivo

Overview Clinical Studies:

BE Study in 20 healthy subjects



Clinical Bioavailability Test versus Reference

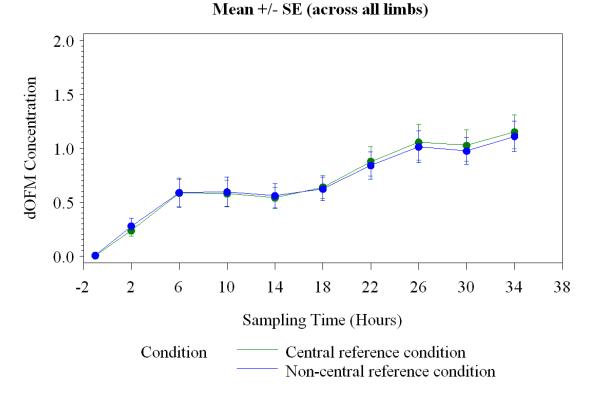
Bioavailability: AUC of Aciclovir A1 are highly reproducible AUC of Zovirax US are highly reproducible

Pharmacokinetics-Based BA Approaches

Clinical Bioavailability Test versus Reference

Outcome variable	Cl _{90%}	BE-limits	Cl _{90%} within BE-limits
log(AUC0-36h)	[-0.369 ; 0.050] or [69.1 % ; 105.2 %]	[-0.223 ; 0.223]	x Failed
log(C _{max})	or [-0.498 ; 0.022] [80% ; 125% or [60.8 % ; 102.2%]		x Failed

BA is tested for the difference of the log-transformed outcome variables (AUC, C_{max}) between test and reference condition


BA is established if $CI_{90\%}$ falls within the limits of log(0.8)=-0.223 and log(1.25)=0.223 (cf. FDA Guidance For Industry)

Bioavailability: BA is different for A1 vs Zovirax US based on AUC BA is different for A1 vs Zovirax US based on Cmax

Clinical Bioavailability Reference versus Reference

dOFM acyclovir concentrations as a function of time

Bioavailability: AUC and Cmax of Zoriax US are highly reproducible

Pharmacokinetics-Based BA Approaches

Clinical Bioavailability Reference versus Reference

Outcome variable	Cl _{90%}	BE-limits	Cl _{90%} within BE-limits
log(AUC0-36h)	[-0.148 ; 0.162] or [86.2 % ; 117.5 %]	[-0.223 ; 0.223]	passed
log(C _{max})	[-0.155 ; 0.190] or [85.7 % ; 120.9%]	- or - [80% ; 125%]	passed

BA is tested for the difference of the log-transformed outcome variables (AUC, C_{max}) between the two reference conditions

BA is established if $CI_{90\%}$ falls within the limits of log(0.8)=-0.223 and log(1.25)=0.223 (cf. FDA Guidance For Industry)

Bioavailability: Same BA for Zovirax US vs Zovirax US based on AUC Same BA for Zovirax US vs Zovirax US based on Cmax

Content

I. Introduction

✓ Open Flow Microperfusion

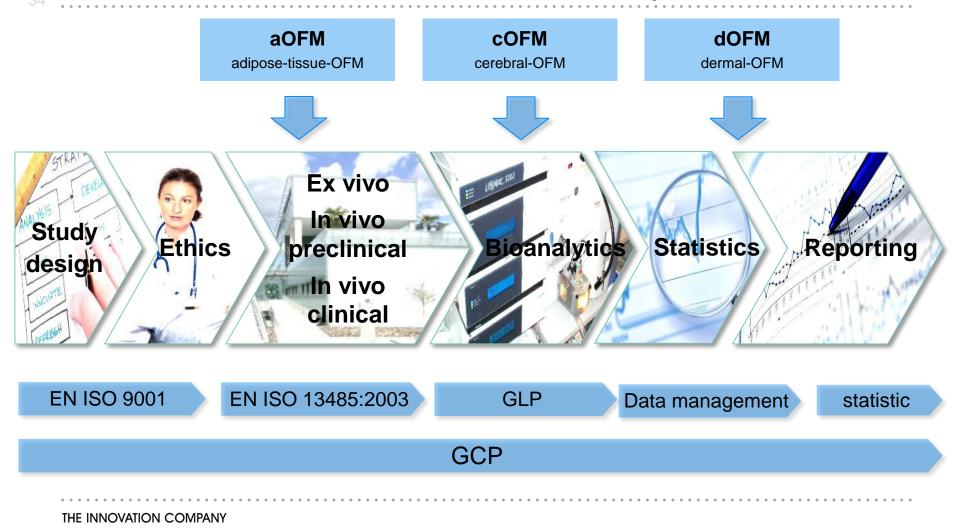
II. How dOFM can speed up your drug development process

Investigation of API stability iand metabolism in "pure" dermal ISF

- Investigation of API stability and metabolism of your API in the dermis
- Pre-clinical proof of mechanism for your API
- ✓ In-vivo PK and PD
- ✓ Bioequivalence

- → Ex-Vivo Model (NCE)
- Psoriasis Rat Model
- → Clinical Study (Secukinumab®)
- Clinical Study (Acyclovir)

III. HEALTH – the scientific "one-stop-shop"

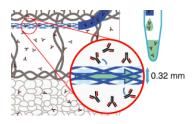

Close Cooperation Joanneum Research - Medical University of Graz

One-Stop-Shop for tissue specific PK and PD

Preclinical facilities Mice, rats, rabbits, pigs, sheep

Clinical Facilities Phase 1-2

- Fully equipped clinical trial center with 12 beds
 Study performance according to GCP
 - Located at the Medical University of Graz



Thank you for your attention

Dr. Frank Sinner JOANNEUM RESEARCH Forschungsgesellschaft mbH HEALTH – Institute for Biomedicine and Health Sciences Neue Stiftingtalstrasse 2, 8010 Graz +43 316 876-4000 frank.sinner@joanneum.at

OFM Peer Reviewed Publications

Case Study Leo Pharma: Two papers in preparation. Submission planned for second half of 2017

Case Study Secukinumab:

- Secukinumab distributes into dermal interstitial fluid of psoriasis patients as demonstrated by open flow microperfusion.
 <u>Exp Dermatol. 2016 Feb;25(2):157-9;</u> doi: 10.1111/exd.12863. Epub 2015 Nov 23.
- β-Defensin 2 is a responsive biomarker of IL-17A-driven skin pathology in patients with psoriasis. J Allergy Clin Immunol. 2017; 139(3):923-932
- Secukinumab treatment rapidly leads to positive proteomic and transcriptional changes in psoriatic skin
 J. Dermatol. Science, 2016, Volume 84, Issue 1

Case Study Bioequivalence:

4) Open Flow Microperfusion as a Dermal Pharmacokinetic Approach to Evaluate Topical Bioequivalence.

Clin Pharmacokinet. 2017 Jan;56(1):91-98. doi: 10.1007/s40262-016-0442-z.