Effect of varying inflow conditions on pharmaceutical powder dynamics in inhaler -like flows

Presenter : Gajendra Singh Co -authors : A. Lowe, A. Azeem, S. Cheng, H -K Chan, A. Kourmatzis

Structure

– **Introduction**

- **Experimental Setup**
- **Discussion – Far-field Imaging**
- **Discussion – High-speed Microscopic Imaging**
- **Conclusion**

Introduction

- **Market share for DPI is estimated to reach 912.3 million USD by 2026. Approximately 40-45 % accounts for asthma patients and COPD patients**
- **The efficiency of the DPI's depends on the inhalation profile and device design, and could go as low as 10-20 %**

Advantage

- **Formulation stability**
- **Rapid dose administration**
- **Minimum cleaning**
- **Automatic synchronisation between inhalation and drug delivery**

Challenges

- **Adequate inhalation pressure to achieve high de-agglomeration and drug deposition**
- **High mouth to throat losses**
- **Low lung delivery**
- **High inter-subject variability**

Objectives

- **To develop an improved understanding of the evolution of pharmaceutical drug powders inside inhalers; provided through high-speed imaging in well-controlled particle laden flows**
- **To establish a database for the fluidization of API powders in typical inhaler-like devices that is amenable to modelling and that serves as a platform for the development of DPI designs and predictive tools**

❑ **Device Design** ❑ **Powder Properties & Flow Conditions** ❑ **Imaging Setup**

Device Design

- **The channel dimensions for inlet 'A' and 'P' are : 12x5 mm. The outlet 'O' has 5x6 mm cross section**
- **Inlet 'P' has a powder insert 2mm deep and located at 14mm downstream of the inflow entrance. It depicts a typical Size-3 DPI capsule**
- **Inlet 'A' is offset by 4mm to create clockwise swirl**

A – Air Inlet P – Powder with Air O – Outflow

Powder Properties & Flow Conditions

- **Mannitol powder with following size : D¹⁰ – 0.9 um, D⁵⁰ – 3um**
- **For each inhalation cycle 3 repetitions are performed by uniformly spreading 40mg of M3 in the powder insert and all inhalation are done at 120 slpm flowrate**
- **For 'M3-G120', a grid is placed downstream of the powder insert**
- **For 'M3-S120', a slot is inserted at inlet 'A'**

The University of Sydney Page 7

A – Air Inlet P – Powder with Air O – Outflow

Imaging Setup

- **The imaging setup consists of :**
	- **Optical inhaler (discussed earlier)**
	- **A vacuum pump (for suction)**
	- **High-speed camera (Photron Fastcam AX100) coupled with Microscope (Questar QM100)**
	- **High -speed laser (Oxford Firefly – 300W, double pulsed Diode Laser)**
- **Frame rate – 7200 fps**
- **Image Size – 4.8 x2.8 mm (1024x608 pixels)**
- **18000 images are collected for each inhalation repetition**

Results & Discussion

❑ **Far-field Imaging** ❑ **High-speed Microscopic Imaging** ❑ **Evolution of Powder Dispersion** ❑ **Conclusion**

Far-field Imaging

- **The fine particle fraction is more in M3-G120 and M3- S120 compared to M3-120**
- **The structure of swirl is more concentric in M3-120 and M3G120 compared to M3-S120**

Powder Pocket Grid

The air flow from both slots generates swirl, which enhances fluidization

enhances fluidization and the size of the particles doesn't fluidize properly
in amaller is an eller the particles doesn't fluidize properly The powder pocket empties faster compared to M3-120, and the size of the particles is smaller

The swirl is not concentric, few large agglomerates

High -speed Microscopic Imaging

O Ġ

- **The figure shows instantaneous near -field images of the devices at 28.33 and 28.47 milliseconds after initiation for all three cases M3 -120, M3 - G120, and M3 -S120**
- **Similar fragment sizes are observed for all three cases (large agglomerates surrounded by fine praticles)**

Evolution of Powder Dispersion

- **For M3-120, the blocked area reaches a peak around 30ms after initiation**
- **After peak inhalation the blocked area remains between 30-35%**
- **For M3-G120, the peak blocked area drops to 10% due to lack of large agglomerates inside the vortex chamber**
- **Large unsteadiness in the blocked area is observed for M3-S120 doe to less concentric swirl vortex**
- **Due to this large agglomerates sporadically collide with the walls of mixing chamber**

Evolution of Powder Dispersion

- **The figure presents the population distribution of blocked area vs the aspect ratio**
- **In case of M3-120, the population of large agglomerates is lower. However the overall size is on the higher side as compared to M3-G120**
- **Due to high fine particle fraction, the particle population in M3-G120 case is low. But some large fragments are also observed**
- **For case M3-S120, the population distribution is towards the higher size due to presence of large agglomerates caused by the lack of concentric swirl**

Conclusion

- **The experimental platform makes a contribution towards better characterizing some of the key dynamic behaviors of pharmaceutical powders in inhaler designs**
- **The full imaging dataset quantifies the behavior of the dispersed phase formation in inhaler devices with respect to key variables, including inflow conditions, powder composition and inhalation (outflow) profiling**
- **It demonstrates that dynamic behavior of inhalable powders can be controlled through modification of inflow conditions.**

Thank You

