

Session 6a: FDA Town Hall Update: Modeling and Simulation in GDUFA Regulatory Science Program

Chairs: Lanyan (Lucy) Fang (FDA), Lei Zhang (FDA)

A predictive multiscale computational tool for simulation of lung absorption and pharmacokinetics and optimization of pulmonary drug delivery

Narender Singh (CFDRC)

San Diego, California

October 7 – 11, 2018

Funding: CFDRC gratefully acknowledge the primary funding (*) and research support from the U.S. Food and Drug Administration (FDA), and secondary funding from NIH and US Pharma

- ***FDA**: 2014-2017 (1U01FD005214-01/03), Drs. Peng Guo (PI), Narender Singh (PI) *Modeling-based optimization of pulmonary drug delivery*
- NIH: 2016-2018 (1R43GM108380-01), Dr. Andrzej Przekwas (PI) A mechanism-based computational tool to optimize pulmonary drug delivery
- Merck: 2016-Current, (Multiple), Dr. Andrzej Przekwas (PI)
- **FDA**: 2018-2021 (HHSF223201810182C), Dr. Narender Singh (PI) *A multiscale computational framework for bioequivalence of orally inhaled drugs*

References:

- A Quasi-3D compartmental multi-scale approach to detect & quantify diseased regional lung constriction using spirometry data. *IJNMBE*, 2018
- A compartment–quasi-3D multiscale approach for drug absorption, transport, and retention in the human lungs. *IJNMBE*, 2017
- A quasi-3D wire approach to model pulmonary airflow in human airways. *IJNMBE*, 2017
- Pharmaceutical aerosols deposition patterns from a DPI. *Medical Eng & Phy, 2017*
- Particle transport in the human respiratory tract. *IJNMBE*, 2015
- A predictive multiscale computational tool to simulate pulmonary drug delivery. AAPS Annual Meeting & Exposition, 2017
- Anthropometry & anatomy-based tools for generation of personalized human respiratory model.... European Aerosol Conference, 2017
- A multiscale framework for computational inhalation pharmacology. 2nd International Conference on Respiratory and Pulmonary Medicine, 2016

OINDPs: Deliver drug(s) to the site of action through inhalation

Thou shalt inhale: Ancient practice. Alkaloids (atropium, 1500BC), Opium (1100BC),...Inhaled epinephrine (1929)

Benefits

- Avoid degradation in GIT and 1st pass metabolism
- Less drug amount (compared to oral)
- Lower dose → Fewer side effects
- Suitable for drugs that are not absorbed orally
- **Rapid** onset of action (large area of lungs)
- Patient compliance (painless, less intrusive)
- Better **storage**, no risk of **infection** (compared to IV)

Pharmaceutical Outsourcing, 2017 Vol 18, Issue 7

Not limited to respiratory diseases: In past four yrs, 1350 active inhalation studies done on 802 different diseases Afrezza (inhaled insulin), Tobramycin, Relenza & Flumist (influenza), Miacalcin spray (osteoporosis),

OINDP: Effect of various factors on ADME properties

• Future **OINDP success** (new, combination, route switching & generics) depends both on device and formulation advancements, and on understand the detailed effect of OINDP parameters on human physiology/pharmacology

OINDP: Multiscale computational framework

Based on the physiological flow/transport of OINDPs from <u>inhalation \rightarrow site of action \rightarrow blood</u> we have developed an **integrated computational framework** for pulmonary drug delivery and PBPK simulations.

Based on the physiological flow/transport of OINDPs from <u>inhalation \rightarrow site of action \rightarrow blood</u> we have developed an **integrated computational framework** for pulmonary drug delivery and PBPK simulations.

Goal to predict

• Effects of **formulation factors** on PK

Particle size, PSD, logP, solubility, mmad, carrier*...

- Effects of **external factors** such as charcoal ingestion
- Effects of **lung physiology**: disease vs healthy PK
- Correlate **local vs systemic** OINDP concentration (PK)
- Ultimately support product development → gain confidence before conducting PD BE studies

OINDP: Multiscale computational framework components (shown simplified)

CFD Research Corporation: 701 McMillian Way • Huntsville, Alabama 35806 • www.cfdrc.com

narender.singh@cfdrc.com • (256) 726-4806

OINDP: Multiscale computational framework PK results for Budesonide

- **Budesonide**: Predicted PK versus experimental PK (shown for **Compartment-based & Multiscale**)
- Our multiscale framework can predict the spatio-temporal drug concentration in any given lung layer (surface lining, Interstitium, & immune, endothelial, epithelial & smooth muscle cells).
- E.g., concentrations shown for in airway smooth muscle cell (AW_sm) layers at two different time points (1mg drug inhalation dose) during simulations
 Site of action for many inhalation drugs

CFD Research Corporation: 701 McMillian Way • Huntsville, Alabama 35806 • www.cfdrc.com

9) Harrison, Thorax, 58(3), 2003

6) Raaska, CPT, 72(4), 2002

OINDP: Multiscale computational framework PK results for Fluticasone Prop

- Fluticasone Prop: Predicted PK versus experimental PK (shown for Compartment-based & Multiscale)
- Our multiscale framework can predict the spatio-temporal drug concentration in any given lung layer (surface lining, Interstitium, & immune, endothelial, epithelial & smooth muscle cells).
- E.g., concentrations shown for in **airway apical epithelial (mucous)** (AW_aEP) layers at two different time points (1mg drug inhalation dose) during simulations

Site of deposition in lung mucosa

CFD Research Corporation: 701 McMillian Way • Huntsville, Alabama 35806 • www.cfdrc.com

OINDP: Multiscale framework conclusion

- Our approach can be efficiently used to **predict inhaled drugs PK profiles at multiple lung sites**
- (e.g. shown for airways epithelial and smooth muscle cells)
- Approach can be **successfully applied** in: Dose optimization, effect of drug's physiochemical properties (logP, mmad, etc.), and ultimately device design and generic drug formulations
- Reduced diameters/thickened mucosa of the lung have been used to model **diseased state PK**
- Models have been integrated in an interactive **GUI** interface

OINDP: Multiscale framework conclusion

Thank You

CFDRC Team

Andrzej Przekwas (Sr. VP, Group Leader CMB)

Narender Singh (Principal Engineer)

Ravi Kannan (Principal Engineer)

FDA Team

Renishkumar Delvadia (FDA CDER) Ross Walenga (FDA CDER) Tian Geng (FDA CDER)