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Outline

• CoBi – Computational Physiology and Pharmacology

• Multiscale Computational Respiratory Pharmacology Tools

• Automated Generation of Lung Model (population)

• Q3D Simulations of Respiration and Aerosol Inhalation

• Airway Barrier Model

• PBPK Model and Validation Results for ICs

• Effects of Product Formulation

• Role of In Vitro Dissolution & Transport Models for IVIVE 

• Bioequivalence

• Conclusions and Recommendations
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CoBi Wire mesh
~15generations

d
Generate Airway Mesh
•3D+Q3D for HF sim
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• Aerosol inhalation 
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• Develop, evaluate, and improve physiologically-based absorption and pharmacokinetic 
models of pulmonary (inhaled) drugs.

• Support the development and evaluation of generic drugs, products, and application 
review in this field.

Integrated computational framework for pulmonary drug delivery and PBPK-PD simulation. 
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CFDRC-FDA Goals and Framework
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• Empirical Typical Path Lung (TPL) model: Fast and can predict the drug 
property based particle depositions in the NOPL/TB/P regions for lung

• 3D CFD model/mesh: ~5-6 generations (200+ outlets!) : O(1.5M) cells
• Quasi-3D (Q3D) wire mesh: O(1500) cells

• Robust, fast running and easily adaptable Quasi-3D wire mesh
• Comprises of a structure of connected wires, with well-defined radii
• Error margin: 5%(laminar)-10 %(turbulent); 10K fold speedup w.r.t. CFD

• Applications: Spirometry simulations & calibrations, Nitric Oxide calibrations, 
Distributed PKPD simulations

Drug Deposition: Airway lumen and wall models

3D vs Q3D validation. Flow rate: 5L/min

CFDRC: Kannan et al. A Quasi-3D wire approach to model pulmonary 
airflow in human airways. 2016 IJNMBE, DOI:10.1002/cnm.2838

O2 exchange animation, 
using Q3D model. 
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Yu & Rosania et al. 
Pharm Res. 2010;27(3):457-67

Airways

Alveoli

Sys. circul.

Clearance

1. Mucous
2. Macrophages
3. Epi cells
4. Interstitium
5. SM cells
6. Immune cells
7. Endo cells
8. Blood

• Rosania model: Predict drug retention/transport across lung tissue 

• Model considers drug ionization, partition into lipid components, and passive 
diffusion across the air-plasma barrier

• Processes are determined by drug physicochemical properties (e.g. logP, pKa) 
& tissue anatomy and physiological/pathological properties (barrier thickness)

Drug Deposition: Lung barrier transport model

8
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PNNL model: 
No rings

Zygote model: 
With rings

Drug Deposition: Model comparisons

CFDRC: Kannan et al. Pharmaceutical aerosols deposition patterns from a Dry Powder Inhaler: Euler Lagrangian prediction and 
validation. 2016 MEP. 9

Model C  
(Tian et al)

• CFD Model Geometry & mesh generation:
• Represent multiple generations 
• Euler Lagrangian (EL) vs Euler Euler (EE) models 
• EL used mainly for drug depositions. EE for aerosol deposition. 

• Q3D model can get the depositions in different lung airways regions. Accurate 
for aerosol depositions. Full EE model

• Currently developing EE (CFD and Q3D) models for modeling prolonged 
inhalation of aerosols (minutes) 



Mass fractions of the aerosol particle 
size distributions for the Novolizer

(model inlet BCs). 

Location Tian et al CFDRC Cast

NOPL 67 56.54 66.5 

Trachea-B3 2.7 4.68

B4-B7 8.2 7.37

NOPL to Gen7/8 77.9 68.45

Novolizer deposition comparisons

CFDRC: Kannan et al. Pharmaceutical aerosols deposition patterns from a Dry Powder Inhaler: Euler Lagrangian prediction and 
validation. 2016 MEP.

• Modeling Budesonide drug deposition on the human airways 

• Transient flow rate provided by the Novolizer DPI
• Drug particle mass distribution (polydisperse) provided by the Novolizer DPI
• Good match with previous published results (Tian et al) of % deposition

Deposition Validation: Budesonide Novolizer DPI

10



Whole-body PBPK & Link to Deposition/Systemic

• Whole-body human PBPK: Central component of drug ADME
Connect lung barrier model (through blood compartment) and gut models
PBPK: 19 compartments that can test multiple delivery route

• Gut model (CAT): Imp since the swallowed drug contributes to drug PK
9 segments connecting ‘stomach(1)-intestine(7)-colon(1)’
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MF plasma conc. after 400 µg inhalation dose.
Plotted (solid circles) are the experimental data from literature

Parameters values for inhaled Mometasone Furoate (MF) & Budesonide

Affrime, JCP, 40(11), 2000; Mortimer, BJCP, 64(4), 2007; 
Kosoglou, IJCOPD, 8, 2013

Full Framework Compartmental PK Validation

Budesonide plasma conc. after 1000 µg inhalation dose. Plotted are the 
various experimental data normalized (for some) to dose of 1000 µg.

Thorsson, BJP, 52(5), 2001; Thorsson, ERJ, 7(10), 1994; Thorsson, BJCP, 
47(6): 1999; Affrime, JCP, 40(11), 2000; Harrison, Thorax, 58(3), 2003; 
Dalby, RR, 10(1), 2009; Lahema, BJCP, 59(2), 2005; Mortimer, BJCP, 
64(4), 2007; Kaiser, BJCP, 48(3), 1999; Raaska, CPT, 72(4), 2002

• Types of drugs : ICs, Beta-2 
agonists (short/long acting), 
Anticholinergics

12
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• Budesonide: 1mg Budesonide inhalation (DPI): healthy cases
• Deposition values: From CFDRCs novalizer results and Tian et al
• Good match with experiments. AUC and Cmax are within experimental range
• Shape/Slope and AUC obtained from the multiscale model are better than the compartmental model

Inhalatory drug PK (healthy): Compartmental & multiscale 
simulations versus experimental PK values

Concentrations in airway smooth muscle 
(AW_sm) cells

AUC and Cmax
comparison of 
compartmental 

and Q3D 
simulations vs 
experiments

Integrated Multiscale Lung-PBPK Model (Budesonide)

CFDRC: Kannan et al. "A Compartment-Quasi3D multiscale approach for drug absorption, transport, and retention in the human lungs. 
IJNMBE (DOI: 10.1002/cnm.2955) 13



• Fluticasone propionate: 1mg FP inhalation (DPI): healthy case
• NOPL region has around 72-78% (Exp). We scaled the  OPL region to 75%
• Very low systemic bio-availability and solubility (1/100th that of Budesonide), i.e. dissolution time in 

mucosa is >8 hrs for FP compared to 6 mins of Budesonide

• Conc. in the vein is much lower than the Budesonide simulations due to low solubility 
• In both cases (compartmental vs multiscale), the initial rise is the same, since it is dictated by the 

GUT model  (since the drug transport to the GUT is very fast and the low dissolution and transport 
across the lung walls is a slow process)

• DIP-AND-BOUNCE phenomenon is observed only in the multiscale model (similar to experiments).

Inhalatory drug PK (healthy): Compartmental & multiscale 
simulations versus experimental PK values

Concentrations in airway apical-epithelial 
(AW_aEp) cells; Note the appearance of blobs, 

unlike the Budesonide case (due to poor solubility)

CFDRC: Kannan et al. "A Compartment-Quasi3D multiscale approach for drug absorption, transport, and retention in the human lungs. 
IJNMBE (DOI: 10.1002/cnm.2955)

Integrated Multiscale Lung-PBPK Model (FP)
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• PD is done in-sync with the current 7 layer Rosania’s PK model for each airway section 
G0-G15 (Gaz et al. J Pharmacokinet Pharmacodyn 2012, 39:415–28)

• The adapted model computes the diameter as a function of time based on the mass of 
the drug at time t & the location z and the potency of the drug to keep the diameters relaxed

• PD was done on both compartmental and Q3D frameworks (both formats needs more 
rigorous validation and parameter fitting etc. based on experimental data – not available) 
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i = The generation number 
KDRUG = Rate coeff. describing the drug potency
Ci = Conc. of the dissolved drug in that region 
CMAX = Scaling coeff. 
NRECEPTORS = # of ASM receptors/unit-volume. 
KDISEASE = Rate coeff. that forces the diameters to return to their pre-drug levels
DHi = Diameter of the healthy specimen at Gen #i
DD0i = Diseased diameter prior to drug inhalation

Pharmacodynamics Modeling (PD)

Local non-dimensional lung diameters15
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• Test case: 1000 µg Budesonide inhalation, assuming a 
uniform 20% diameter shrinkage (non-uniform can also be 
handled); (180000 ~ 2 days) 

• Lower airways have the least amount of the dissolved drug
• Consequently, difficult to maintain the “relaxed” diameter 

levels at these locations.



0

20

40

60

0 10 20 30
0

20

40

60

0 10 20 30

0.00

0.02

0.04

0.06

0 10 20 30

0

20

40

60

0 10 20 30

0.00

0.02

0.04

0.06

0 10 20 30

0

20

40

60

0 10 20 30

0.00

0.02

0.04

0.06

0 10 20 30
0.00

0.02

0.04

0.06

0.08

0 10 20 30

0.01
0.15
0.99

0.01
0.15
0.99

0.5
0.9
2.0

2.0
3.4
4.5

1.5
2.0
4.5

1.5
2.0
4.5

2.0
3.4
4.5

0.5
0.9
2.0

Varying fu Varying B2P Varying logP Varying mmad

Time (hr) Time (hr) Time (hr) Time (hr)

Systemic (plasma) concentration (µg/ml)

Formulation Effects on PK 
• Two types of formulation effects on PK: Physiochemical and FPF%
• Physiochemical property related changes: logP, mmad, fu etc.
• Carrier related changes: Effect FPF%
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fu: fraction of unbound drug in plasma - Driving force behind the transport of the drug from lung to plasma;
B2P: (blood-to-plasma partition ratio) Drug partitioning in the blood cells (RBC); 
logP (hydrophobicity): Influence the transport rate of the drug through various physical compartments after dissolution; 
mmad: mass-median particle diameter that has 50% of the aerosol mass residing above and 50% of its mass below it
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Formulation Effects on PK 

• Two types of formulation effects on PK: Physiochemical and FPF%
• Physiochemical property related changes: logP, mmad, fu etc
• Carrier related changes: Effect FPF%  
• Most formulation effects are through FPF% in literature
• Variation in FPF is calculated through empirical modeling of 28 various formulation 

factors (variables). 

Mendyk et al. Int J Nanomedicine. 2015; 10: 801–810.

FPF (%) = 
((-C7+C17+C4-C14-C16-
EXP(C27))/(C25-C5))-(C18/((C32-
C27*(C18) (̂C33/2))*(C25-C5)))+((C17-
C6*C21) Ĉ4)/(LN(C16)*(C25-C5))

17



• FPF was further used to enhance compartmental and Q3D approaches through multiple “bins” to induce 
the poly-disperse effect on Budesonide and FP (not shown) drugs

• A much better agreement, using the poly-dispersed compartmental model
• Just 2 bins are sufficient to get qualitatively good results.
• Can be used for performing formulation specific simulations: using the FPF Equation

(1) Mortimer, 2007
(2) Harrison, 2003
(3) Lahelma, 2004
(4) Thorsson, 1994
(5) Dalby, 2009
(6) Raaska, 2002
(7) Thorsson, 2001

18
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Dissolution Modeling of Drugs Using Transwell

JD-M

JM-R

Donor (D)

Membrane (M)

Receiver (R)

Transwell Schematic

Dissolution model: The dissolution of the solid particles is modeled using the Noyes-Whitney 
Equation or the Nernst-Brunner Equation.
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Diffusive Fluxes Across the Interfaces:

Vd – Donor Media Volume
Vm – Membrane Volume
Vr – Receiver Media Volume
Cd           – Donor Media Concentration
Cm           – Membrane Concentration
Cr – Receiver Media Concentration
Jd-m – Diffusive Flux: Donor to Membrane
Jm-r – Diffusive Flux: Membrane to Receiver

Mathematical model of a Transwell.

[HA]donor

[HA]memb

[HA]receiver
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Dissolution Modeling of Inhalation Drugs

Properties of Budesonide
MW 430.534
logP 2.5

Solubility 17 μg/ml

User Inputs
Initial Mass 1.7 μg 

Particle Size 2.5 μm

a. Dissolution behavior can be modeled using the 
physico-chemical properties of the drug

b. Mathematical models of the Transwell were developed 
using both ODE and PDE based formulations

∂ ∂ ∂
= +

∂ ∂ ∂
C CD S
t x x

Source or Sink term
(efflux, metabolism etc.)

CFDRC’s CoBi Framework solves PDE transport equation 
simultaneously in the entire domain i.e., from the top free media 
surface of the donor compartment, through the membrane to the 

bottom of the receiver reservoir

**The slight difference between the experimental result and the 
simulation prediction might be due to the assumption made here. 
These include:
1. Receiver compartment is unstirred
2. Samples taken from the bottom of the receiver compartment

Dissolution behavior of Budesonide

Experimental data was extracted from 
Arora, Deepika, Kumar A. Shah, Matthew S. Halquist, and Masahiro Sakagami. "In vitro aqueous fluid-
capacity-limited dissolution testing of respirable aerosol drug particles generated from inhaler products." 
Pharmaceutical research 27, no. 5 (2010): 786-795. 20

Sakagami
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• Developed and multiscale simulation framework for inhalation pharmacology - -
inhalation, deposition, dissolution, absorption, transport and systemic PBPK

• Established novel aerosol inhalation and deposition simulation framework 
combining 3D and Q3D approaches

• Developed healthy and diseased state lung models based on experimental data

• Demonstrated formulation effects and physiochemical parameter effects on 
pulmonary and systemic circulation

• Validated the integrated framework on several inhaled corticosteroids/others 

• CoBi Inhalation Pharmacology and GUI tools as an Open Source framework

• Future: 

• Modeling of non-ICS inhalation drugs and drug combinations of ICS and non-ICS
• Establish a computational platform for IVIVE for inhalatory delivery of drugs
• Study the effects of specific inhalatory drug formulations (bioequivalence):

carrier effects: density, aerodynamics, agglomerate sizes, type of carrier (mannitol,
lactose, sorbitol): How carrier binding effect drug dissolution

• Establishing FDA funded tools as free access Weblets
for in vitro and in vivo Inhalation Pharmacology  

Conclusions and Recommendations



Free interactive access to web-based and cloud computing 
using CoBi tools and Inhalation Pharmacology models

Weblet – Drug Dissolution-Permeation in a Transwell

Test case- Budesonide 

Dissolution/permeation 
of aerosol particles of 
inhaled ICSs in the 
Transwell® system

Arora et al (2010)
Pharm Res 27(5):786-95



Thank You

Questions?
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