Evaluation of Level A *In Vitro In Vivo* Correlations (IVIVC) for Nicotine and Fentanyl Transdermal Delivery Systems (TDS) with Transient Heat Exposure by Using Multiple Approaches

Soo Hyeon Shin, PharmD PhD Candidate University of Maryland, Baltimore

2017 Barrier Function of Mammalian Skin (GRS)

• Definition by the U.S. FDA

School of Pha

"a predictive mathematical model describing the relationship between an in-vitro property of a dosage form and an in-vivo response"

- Level A: a point-to-point correlation between in vitro and in vivo profiles
- <u>Level B</u>: comparison between in vitro dissolution time and in vivo residence time
- Level C: a single point correlation between in vitro and in vivo parameters (e.g. J_{max} vs. C_{max})

Level A is most informative and useful

IVIVC con't

• Value of IVIVC

School of Pharmag

- Facilitate testing of drug candidates and optimization of formulation
- Assist in quality control
- Serve as a surrogate for bioequivalence studies, scale-up and postapproval changes
- \rightarrow Minimize/Reduce in vivo clinical studies (Save \overline{K} & (\bar{k}))
- Currently, no formal guidance for developing IVIVC for TDS exists.
- IVIVC for TDS is not accepted by regulatory agencies to support biowaiver claims.

Why is Heat on Drug Delivery from TDS of Interst?

- Many sources of heat:
 - Heating pads
 - Saunas
 - Hot tubs
 - Sunbathing
 - Prolonged activity under direct sunlight

 FDA required labeling change for Duragesic[®] fentanyl TDS (RLD) with a <u>warning against heat</u>

⇒ Same labeling change was required for generic fentanyl TDS

 Multiple life-threatening incidents when TDS was exposed to heat

SCHOOL OF PHA

- 1. Can *in vitro* permeation test (IVPT) predict the performance of TDS and heat effects on drug delivery and absorption *in vivo*?
- 2. Does heat affect drug delivery/absorption from TDS differently on products with different inactive ingredients (i.e. RLD vs. Generic)?
- 3. Does heat exposure at different TDS wear periods (early vs late) results in different effects?

Model Drugs: Nicotine & Fentanyl

I. Harmonized in vitro and in vivo study designs

School of Ph

- II. In vitro: IVPT studies using dermatomed human skin
- III. In vivo: pharmacokinetics (PK) study in healthy human subjects
- IV. Evaluation of *in vitro* and *in vivo* correlations (IVIVC) for TDS

- Dermatomed Human Skin (~250 microns)
- In-line flow-through diffusion system
- Permeation area of 0.95 cm²

UNIVERSITY of MARYLAND

SCHOOL OF PHARMACY

Î

Temperature Monitoring & Heat Application In Vitro

Infrared Thermometer

Temperature Monitoring & Heat Application *In Vivo*

- Kevlar sleeve with an opening to expose TDS, while protecting skin outside the dosing area
- Thermometer probe adjacent to TDS

JNIVERSITY of MARYLAND

- Pre-heated heating pad
- ACE[™] Bandage to ensure good contact between TDS and heating pad

Thermometer image from http://static.coleparmer.com/large_images/91427_10_5.jpg

1. Nicotine TDS, 14 mg/24 hr

	NicoDerm CQ [®]	Aveva
TDS size (cm ²)	15.75	20.12
Drug content (mg)	Not available	Not available
Rate/Area (µg/cm²/h)	37	29
Adhesive	Polyisobutene	Acrylate/Silicone
Other Inactive ingredients	Ethylene vinyl acetate- copolymer, high density polyethylene between clear polyester backing	Polyester

Î

Study Designs – Nicotine TDS

Î

IVPT Results

Human Skin Data

Mean ± SEM from 4 donors for Early Heat and Late Heat, 2 donors for Baseline with n=4 per donor

Two-way ANOVA followed by Bonferroni's post-hoc multiple comparisons

In Vivo Results

NicoDerm CQ® Aveva 40-40-Early Heat Nicotine Conc. (ng/mL) Nicotine Conc. (ng/mL) Late Heat 30 30-**20**· 20-10 10-0 12 0 10 2 8 0 8 2 Time (hr) Time (hr) 50-Heat No Heat 2.5 C^{max} Enhancement Ratio Early Heat Late Heat 40 ** C^{max} (ng/mL) *** 10-0-0.0 Aveva theat Aveva Heat NicoDernat NicoDernat NicoDennest Nicolutiest NicoDerm CQ® Aveva

UNIVERSITY of MARYLAND

SCHOOL OF PHARMACY

Î

Two-way ANOVA followed by Bonferroni's post-hoc multiple comparisons

10

12

IVIVC: Heat Effects

No statistically significant difference (p > 0.05) between in vitro and in vivo heat effects (Two-way ANOVA, followed by Bonferroni's post-hoc multiple pair comparisons)

- In vitro data from 4 donors with n=4 replicates per donor
- In vivo data from 10 subjects

JNIVERSITY of MARYLAND

SCHOOL OF PHARMACY

IVIVC: Level A (Approach I)

1) Prediction while TDS was worn (time points from 0 to 9 h):

$$C_s = \frac{R_{in} \cdot H_i}{CL} \cdot (1 - e^{-kt})$$

2) Prediction after TDS removal (time points after 9 h until 12 h):

$$C_s = C_0 \cdot e^{-kt}$$

School of Pharmag

- C_s is the predicted serum concentration
- R_{in} is rate of input obtained from mean flux during steady-state in IVPT experiments
- H_i is the *in vitro* heat factor at the respective time point, a term describing composite heat effect during and after heat application
- *CL* is the population total body clearance of nicotine
- *k* is the elimination constant
- *t* is the time after administration of TDS for Eq.1 and the time after removal of TDS for Eq. 2
- C_0 is the initial concentration after TDS removal (the predicted C_s at 9 h)

IVIVC: Level A (Approach I)

UNIVERSITY of MARYLAND

SCHOOL OF PHARMACY

Ī

Nicotine Conc. (ng/mL)

Prediction Error (%)

 $=\frac{|Observed - Predicted|}{Observed} \times 100$

	NicoDerm CQ [®]				
	Early Heat Late Heat				
Total AUC	4.5	6.4			
C _{max}	10.8	8.4			

	Aveva				
	Early Heat Late Heat				
Total AUC	31.2	5.5			
C _{max}	38.2	6.4			

Aveva – Late Heat

IVIVC: Level A (Approach II/III)

1) Reconstruct the baseline (no heat) in vivo profile

INIVERSITY of MARYLAND

SCHOOL OF PHARMACY

• Late Heat data (time 0 to 7.75 hrs) + Early Heat data (time 8.08 to 12 hrs)

Deconvolute *in vivo* profile (Wagner-Nelson method) to obtain *in vivo* fraction of drug absorption

School of Phar

- 3) Construct IVIVC model between *in vitro* fraction of drug permeation and *in vivo* fraction of drug absorption
- 4) Examine and find the model with the best fit \rightarrow Obtain regression coefficients

5) Predict the *in vivo* fraction of drug absorption using the regression coefficients obtained from the IVIVC model

 $F_{in \, vivo(predicted)} = B_0 + B_1 F_{in \, vitro(observed)} + B_2 F_{in \, vitro(observed)}$

IVIVC: Level A (Approach II/III)

6) Convolute the predicted fraction of drug absorption vs time profile to obtain conc. vs time profile

INIVERSITY of MARYLAND

SCHOOL OF PHARMACY

7)

8)

IVIVC: Level A (Approach II, H_{i (in vitro)})

UNIVERSITY of MARYLAND

SCHOOL OF PHARMACY

	NicoDerm CQ [®]				
	Early Heat Late Heat				
Total AUC	10.2	4.6			
C _{max}	31.8	0.4			

	Aveva				
	Early Heat Late Heat				
Total AUC	0.5	6.7			
C _{max}	7.6	0.4			

IVIVC: Level A (Approach III, H_{ii (in vivo)})

UNIVERSITY of MARYLAND

SCHOOL OF PHARMACY

Ī

	NicoDerm CQ [®]				
	Early Heat Late Heat				
Total AUC	5.1	1.2			
C _{max}	15.0	5.8			

	Aveva					
	Early Heat Late Heat					
Total AUC	1.1	4.5				
C _{max}	8.9	17.7				

- Early vs. Late Heat effect comparable both *in vitro* and *in vivo*
- Heat effect on two differently formulated TDS comparable both *in vitro* and *in vivo*
- In vitro and in vivo heat effect ratios were comparable
- Strong IVIVCs between IVPT and clinical human PK studies under the matched study designs

2. Fentanyl TDS, 25 μ g/hr

	Duragesic [®]	Apotex	Mylan
Drug Load (mg)	4.20	2.76	2.55
Size (cm ²)	10.50	10.70	6.25
Thickness (µm)	110	200	190
Adhesive	Polyacrylate	Polyisobutene	Silicone
Other Inactive Ingredients	Polyester/ ethyl vinyl acetate backing film, copovidone	Isopropoyl myristate, octyldodecanol, polybutene, polyethylene/ aluminum/ polyester film backing	Dimethicone NF, polyolefin film backing
Appearance	DURAGESIC 25 mcg/h (fentanyl transdermal)	25 mcg/h 25 mcg/h tanyl Fentanyl Fe ncg/h 25 mcg/h 25 Fentanyl Fentanyl 25 mcg/h 25 mcg/h anyl Fentanyl Fe	25 mcg/hr 25 mcg/hr 2 Fentanyl Fentanyl Fent 25 mcg/hr 25 mcg/hr 25 m entanyl Fentanyl Fentan 20c/hr 25 mcg/hr 25 mr

Study Designs – Fentanyl TDS

UNIVERSITY of MARYLAND

SCHOOL OF PHARMACY

Î

Mean ± SEM from 4 donors with n=4 per each donor

Two-way ANOVA followed by Bonferroni's post-hoc multiple comparisons

Ĩ

In Vivo Results

IVIVC: Heat Effects

D: Duragesic[®] A: Apotex M: Mylan

In vivo heat effect is greater than in vitro, with higher variability (Two-way ANOVA followed by Bonferroni's post-hoc multiple pair comparisons)

- In vitro data from 4 donors with n=4 replicates per donor
- In vivo data from 8 subjects

IVIVC: Level A (Approach I)

UNIVERSITY of MARYLAND

SCHOOL OF PHARMACY

Î

IVIVC: Level A (Approach II, H_{i (in vitro)})

Î

IVIVC: Level A (Approach III, H_{ii (in vivo)})

Î

% Prediction Errors

Fontanyl TDS		Duragesic®		Apotex		Mylan	
rent	aliyi 105	Early Heat	Late Heat	Early Heat	Late Heat	Early Heat	Late Heat
			Aŗ	oproach I			
	CL = 75 L/h	5.6	19.4	48.8	40.5	4.9	1.9
Total AUC	CL = 51 L/h	55.3	75.6	163.0	106.6	54.3	44.3
	CL = 27 L/h	193.3	231.5	396.8	290.3	191.3	172.6
	CL = 75 L/h	5.8	19.3	3.6	18.7	9.2	21.7
C _{max}	CL = 51 L/h	38.5	18.8	52.4	19.6	33.6	15.2
	CL = 27 L/h	161.7	124.2	187.8	125.9	152.3	117.6
Approach II (<i>H_i</i>)							
Tot	tal AUC	7.0	0.8	8.4	23.3	1.2	14.7
	C _{max}	35.2	4.5	39.1	40.4	20.3	2.6
Approach III (H _{ii})							
Tot	tal AUC	16.5	10.1	29.3	1.4	6.5	6.0
	C _{max}	7.8	2.0	16.9	26.7	8.6	41.3

SCHOOL OF PHARMACY

Conclusions – Fentanyl

- Early vs. Late Heat effect comparable both *in vitro* and *in vivo*
- Heat effect on three differently formulated TDS comparable both *in vitro* and *in vivo*
- However, in vivo heat effect seemed to be higher compared to the in vitro heat effect
- IVIVCs between IVPT and clinical human PK studies under the matched study designs

 \Rightarrow Less strong compared to nicotine...

Î

1. Lipophilicity of Fentanyl

UNIVERSITY of MARYLAND

Î

2. High Inter-subject Variability of Fentanyl

Reference	Subject #	Condition	Cl (L/h)
Ariano et al. J Clin Pharmacol 2001	18	Healthy	128
Bower et al. Br J Anaesth 1982	7	Healthy	92
Bentley et al. Anesth Analg 1982	5	Surgical	59
McClain et al. Clin Pharmacol Ther 1980	5	Healthy	57
Varvel et al. Anesthesiology 1989	8	Surgical	46
Shibutani et al. Anesthesiology 2004	16	Surgical	43
Haberer et al. Br J Anaesth 1982	13	Surgical	42
Scott et al. J Pharmaol Exp Ther 1986	15	Healthy	34
Hengstmann et al. Br J Anaesth 1980	5	Surgical	26
Schleimer et al. Clin Pharmacol Ther 1978	6	Surgical	12
Fung et al. J Clin Pharmacol 1980	9	Healthy	10
Univ. of Maryland, Baltimore (ongoing)	13	Healthy	10
Duragesic [®] Prescribing Information	?	Surgical	27 - 75

3. Higher *in vivo* heat effect for fentany

Nicotine TDS

Î

Fentanyl TDS

- Three approaches were evaluated to demonstrate Level A IVIVC for TDS
- Strong IVIVC demonstrated for nicotine TDS, including heat effect
- Weaker IVIVC found for fentanyl TDS

SCHOOL OF PHA

- Limitation of mimicking drug reservoir in skin layers, microcirculation and subcutaneous tissue in vitro
- High inter-subject variability for fentanyl (+ Lack of reliable PK parameters)

Acknowledgments

<u>Advisors</u>

JNIVERSITY of MARYLAND

SCHOOL OF PHARMACY

- Audra Stinchcomb, Ph.D.
- Hazem Hassan, Ph.D.

Past & Current Lab Members

Contributors to the work presented:

- Inas Abdallah, Ph.D.
- Mingming Yu, Ph.D.
- Sherin Thomas, M.S.
- Dana Hammell, M.S.

Clinical Study Team

- Samer El-Kamary, M.D.
- Wilbur Chen, M.D.
- Melissa Billington
- Juliana Quarterman
- Dani Fox
- GCRC nurses

Clinical Study Participants

<u>U.S. FDA</u>

Division of Therapeutic Performance, Office of Research and Standards, Office of Generic Drugs

- Sam Raney, Ph.D.
- Priyanka Ghosh, Ph.D.

Fundings

• 1U01FD004955

Thank You for your attention!

Any Questions?