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• Structure

• Advantages

e.g., PLGA 50/50, m/n = 1
PLGA 75/25, m/n = 3

Mw ~ 10 kDa - 100 kDa

• Major configurations of injectable devices

– wide range of properties – No daily injections
– ease of processing and biodegradable – Control release rate
– predictable in vivo degradation kinetics – Lower systemic toxicity
– used in numerous FDA approved products – Reduce booster doses (vaccines)

microspheres (1 - 100 µm) millicylinders (∅ = 0.8-1.5 mm) 
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in-situ forming implants

Poly(lactic-co-glycolic acid) (PLGA) for 
controlled drug delivery
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Name Company Disease

Peptides Sandostatin© LAR© Novartis Acromegaly

Lupron© TAP Prostate and breast cancer

Decapeptyl© Depot Ferring Prostate cancer, endometriosis

Trelstar© Pfizer Prostate cancer

Pamorelin © Ipsen Prostate cancer

Somatuline© LA Ipsen Acromegaly

Suprecur MP© (Japan) Mochida Endometriosis

Proteins Nutropin Depot® Genentech Pediatric GH deficiency

Small 
Mol.

Vivitrol© Cephalon Alcoholism

Risperidal© Consta© Janssen Schizophrenia

Arestin© OraPharma Peridontal disease

Parlodel LA © Sandoz Parkinson’s, acromegaly

Wischke, C.; Schwendeman, S. P., International Journal of Pharmaceutics 2008, 364, (2), 298-327. 
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Examples of PLGA microspheres used clinically



No generic PLGA-based drug 
products approved by US FDA
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“Currently, no PLA/PLGA-based generic 
drug products have been approved.”



• Strong diversity of scientific disciplines needed (polymer chemistry, material 
science, pharmaceutics, engineering/unit ops, p-chemistry, etc)

• Most research focused on delivering a drug and not understanding mechanism

• Tendency to oversimplify complex physical chemistry (e.g., small vs. large 
molecular drug, role of microsphere size)

• Shortage of specialized assays
and insufficient research 
equipment in academic labs

• Key development science proprietary
(manufacturing, scale up, 
composition-equivalent formulation)

Challenges for PLGA science
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How is slow release commonly 
achieved from PLGA?

Diffusion 

Osmotic pressure/swelling

Bioerosion when polymer chains
become small enough to give
way to stresses and/or dissolve

Combination of 3 basic phenomena —

Fredenberg et al., Int. J. Pharm.,  415, 34–52 (2011) 6



Additional mechanisms that
influence drug release from PLGA?

Passive healing (i.e., spontaneous pore closing)

Desorption (or decoupling polymer/drug 
interactions)

Dynamic polymer microstructural changes

3 other phenomena not normally discussed —
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4 cases of diffusion through
non-degradable polymer matrices

• Case 1
- Cs > Cd; transport in polymer phase

• Case 2
- Cs < Cd; transport in polymer phase

Cs = drug solub. In polymer
Cd = drug loading (mass/vol.)
L = thickness of matrix
Dim = drug diffusion coef 

in polymer

Exact solutions

Early-time solution

Higuchi solution

(Langer & Peppas, Biomaterials, 1981)
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• Case 3
- Cs < Cd; transport in pores

• Case 4
- Cs > Cd; transport in pores

Cs = drug solub. In polymer
Cd = drug loading (mass/vol.)
L = thickness of matrix
Diw = drug diffusion coef 

in water
Csw = drug solub in water
ε = matrix porosity
τ = matrix tortuosity

(Langer & Peppas, Biomaterials, 1981)

4 cases of diffusion through
non-degradable polymer matrices
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Monitoring polymer diffusion of 
pH-independent dye by LSCM
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Examples of measured and fitted probe 
concentration profile inside microparticles
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(Kang & Schwendeman, Macromolecules, 2003)
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Kinetics of Bodipy effective diffusivity and 
predictability of Dye release

(Kang & Schwendeman, Macromolecules 2003)

Case 1

predicted release
from confocal 
measurement of D
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Release by diffusion with 
loading >> percolation threshold

Rationale: 
- If diffusion in polymer is much more
rapid than polymer degradation, 
get cases 1 or 2

- If use very high loading >> percolation
threshold, then get cases 3 or 4

PLA, Mv = 32.6 kD

(Zhang et al., J. Cont. Rel., 1994)

Pure PLA coat

Release from ends

Case 2
> 40% load
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• Observations
- Initial pores, pore creation, and swelling
- floating microspheres allowed contrast of time frames
- pore closing with loss

of permeability

(Wang et al.,
J. Cont. Rel., 2002)

Burst release of octreotide 
from PLGA microspheres
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Pore network for diffusion during
release not static

Morphology of octreotide acetate-loaded PLGA 
microspheres after incubation at 37°C in acetate buffer 

solution. 
(Wang, et al., J. Cont. Rel., 82, 289-307 (2002))

Polymer healing (spontaneous pore closing)

• Loss of surface   
pores stops initial 
burst of peptide

0  h 0.3  h

5  h 24  h 

1  h 
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Burst release of octreotide 
from PLGA microspheres

• Three phases identified
1. High permeability (initial holes and rapid pore opening)
2. Medium permeability (swelling overcomes shrinking diffusion path)
3. Pore closing

(Wang et al.,
J. Cont. Rel., 2002)
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Pore closing in PLGA-Glucose microspheres
captured as a function of temperature

• Observations
- Higher temp increases
pore closing rate

- Both dextran and BSA obey same
behavior

(Kang & Schwendeman, Molec. Pharm., 2007)
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Pores close at 37 °C—stay open at 4 °C

Pre-incubation: 37 °C, 
2 days

Pre-incubation: 4 °C, 
2 days

No pre-incubation

Mol. Pharm., 4, 104-118 (2007)

• Monitoring open pores by 12-h uptake of fluorescent dextran
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Simulated healing times can match
well with experimental data

Left - Courtesy of Jessie Huang and Michael Thouless, UM Mechanical Engineering

Mazzara et al. J. Control. Rel., 171, 172-177 (2013)    Huang et al. J. Control. Rel., 206, 20-29 (2015) 
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PLGA mass loss occurs at a critical MW 
providing a means to control drug release

20



Common method to accomplish continuous
release of peptides and small molecules –

use low molecular weight PLGA
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PLGA 50/50, Mw = 15.2 kD

(Hutchinson, EP 058481, 1982)

low MW fraction (as a blend or 
100%) helps to eliminate 
induction time of mass loss for 
sustained erosion-controlled 
release



Cage Model for Evaluation of 
Microsphere Performance

Cages:

 Surgical grade stainless steel mesh (37 µm opening)
 Silicone tubing for injection into cage
 Vulcanize and autoclave
 Validated by PK vs. SC injection
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PK of the steroid triamcinolone acetonide (Tr-A)/PLGA 50/50 microspheres

Doty et al. Biomaterials, 109, 88-96 (2016)

silicone
mesh

Ht 0.5 cm

OD 1.59 cm

ID 1.27 cm
B

Amy Doty



Continuous release of leuprolide 
from PLGA microspheres
(use low molecular weight PLGA)
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Comparing mechanistic signatures 
in vitro and in vivo for leuprolide from R503H
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1-day absorption of cationic peptides in R502H 
in neutral pH buffer solution
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leuprolide

octreotide

(Sophocleous et al., J. Cont. Rel. 2013)



Proposed desorption mechanism
for in vitro leuprolide release from 503H 

26
(Hirota et al, J. Cont. Rel., 2016)



Release of octreotide from SLAR
accelerated in the presence of leuprolide
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Case for water-mediated processes 
controlling drug release
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Rationale: 
- If diffusion slower than osmotic pumping

(e.g., by increasing cylindrical length)
then strong dependence on external π

PLA, Mv = 32.6 kD

(Zhang et al., J. Cont. Rel., 1994)

Pure PLA 
coat

Release from ends 30% load



Water uptake continuous and extensive
for leuprolide release from R503H
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Microstructural changes detected by
confocal mapping of bodipy uptake in R503H
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Characterizing release mechanisms
and identifying biorelevant in vitro release media

Compare time-scales to 
understand release mechanisms

(acid-capped PLGA 50/50)
Characteristic times (in days) of release and erosion

R² = 0.9835
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Doty et al., Eur. J. Pharm. Biopharm, 113, 24-33 (2017)
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Summary

 Several mechanisms contribute to the release of drugs from PLGA  

microspheres in vitro and in vivo

 In addition to erosion, diffusion, and water-mediated processes, pore   

healing, drug-polymer interactions, and other dynamic microstructural  

changes to the polymer may affect the release mechanism 

 Development of a cage model has provided utility to facilitate mechanistic 

analysis of in vivo release by recovery of the microspheres

 Further refinement of methods to evaluate mechanistic effects in vitro

and in vivo for existing products would appear useful to compare incoming   

generic drug products

 Continued focus on mechanistic research and related opportunities may 

reduce barriers to new PLGA microsphere products 32
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