

Schwendeman lab
Biointerfaces Institute, North Campus Research Complex Department of Pharmaceutical Sciences

Examples of PLGA microspheres used clinically

Minimally invasive delivery of large molecules - Battle of GLP-1s

- \diamondsuit **Bydureon** Once-weekly injection Exenatide-encapsulated in PLGA microspheres (FDA approved 2012)
- \diamond **Victoza** Once-daily injection Liraglutide-lipid/AA modification for increasing circulation time

Controlled release *in vivo* often faster than *in vitro*

IN VITRO

- Triphasic release
- Initial Burst 20-30%
- Lag phase 5-9 days
- Total release in 30-35 days

IN VIVO

- Biphasic Release
- Initial Burst 15-45%
- No apparent lag phase
- Total Release in 12-16 days

Polymer degradation can also be faster *in vivo*

Biomaterials

Biomaterials 20 (1999) 1057-1062

Factors affecting the degradation rate of poly(lactide-co-glycolide) microspheres in vivo and in vitro

M.A. Tracy*, K.L. Ward, L. Firouzabadian, Y. Wang, N. Dong, R. Qian, Y. Zhang

Alkermes Inc., 64 Sidney Street, Cambridge, MA 02139, USA

Received 20 January 1998; accepted 30 December 1998

Table 2

In vivo vs. in vitro degradation results for PLG 50:50 microspheres

Microsphere polymer type	In vivo rate constant $(\times 10^{-2})$ (1/days)#	In vitro rate constant $(\times 10^{-2})$ (1/days)#	Rate constant ratio in vivo/in vitro	Microsphere duration in vivo (days)	Microsphere duration in vitro (days)
Capped, 9.5 kD	$-3.3 + 0.6$	-1.8 ± 0.3	1.8	$50 - 60$	$\geqslant 60*$
Capped, 12.7 kD	-4 ± 1	-2.4 ± 0.7	1.7	$42 - 49$	$\geqslant 60*$
Uncapped, 8 kD	$-13 + 5$	-5 ± 1	2.6	$14 - 21$	\sim 35
Uncapped, 21 kD	$-7.9 + 0.8$	-4.4 ± 0.8	\vert 1.8	$21 - 28$	$>60*$

* Last time point taken.

 $#$ Errors are 95% confidence limits.

How is slow release commonly achieved from PLGA?

Combination of 3 basic phenomena —

 \Diamond Diffusion

- Osmotic pressure/swelling
- \diamondsuit Bioerosion when polymer chains become small enough to give way to stresses and/or dissolve

Diffusion through pores

Diffusion through the polymer

Osmotic

pumping

Erosion

What factors can affect the release mechanism?

- Buffering system and capacity
- Ionic strength/osmotic pressure
- pH
- Volume/flow
- Enzymes
- Lipids
- Inflammatory response
- *Unknown* small molecules present *in vivo*

Long-term objective: Understand mechanistically *in vivo* controlled release from PLGA microspheres and develop mechanism-based IVIVCs

Drug release from PLGA microparticles *in vitro*

Knowledge Gap

How do these differ? Why do these differ?

Drug release from PLGA microparticles in vivo

Measure relevant time scales**—** τ_{release} τ_{erosion} $\tau_{\text{water uptake}}$ $\tau_{\text{hydrolysis}}$ $\tau_{\rm diffusion}$

Two Triamcinolone acetonide (Tr-A)

In vitro release methods

Release media

- Phosphate buffered saline + 0.02% Tween 80 (PBST)
	- pH 7.4 (standard condition)
	- pH 6.5
- HEPES buffered saline pH 7.4 + 0.02% Tween 80
- PBS + 1.0% triethyl citrate (TC)

Method

- 5mg (approx) incubated in 50mL media
- 37°C, mild agitation
- Particles centrifuged and media completely removed and replaced

Analyses (release and mechanisms of release)

- Release media analyzed for drug content by HPLC
- Molecular weight determined by GPC
- Mass loss and water uptake determined gravimetrically
- Particles incubated in BODIPY to determine diffusion coefficient

τ_{release}

$\tau_{\text{hydrolysis}}$

 $\tau_{\text{mass loss}}$; $\tau_{\text{water uptake}}$

 $\tau_{\text{diffusion}}$

In vivo release methods

- Measure PK (indirect)
- Recover microspheres after injection

Problem!! – How to recover microspheres intact after administration – we don't see them??

> We want to to understand mechanism and therefore want to measure**—** τ_{release} τ _{hydrolysis} $\tau_{\text{mass loss}}$; $\tau_{\text{water uptake}}$ $\tau_{\text{diffusion}}$

How can we recover microspheres simply *In vivo*?

The Cage implant—

◦ Developed by Marchant *et al.* for evaluation of biocompatibility of biomaterials

Cage Model Design

Cages:

Stainless steel mesh (37µm openings) Silicone tubing Silicone elastomer Vulcanize and by autoclave

Loading of Microspheres into Cages:

- 1. Microspheres are suspended in an injection medium containing 1% CMC
- 2. Suspension is injected (via 20g needle) through silicone tubing into cage
- 3. Loaded cages are suspended in saline solution until implantation

Cage Implantation:

- 1. Animals are anesthetized and surgical site is sterilized
- 2. Single incision is made on the flank and a subcutaneous pocket is created
- 3. Cage is implanted into the pocket
- 4. Incision is closed using veterinary adhesive

Validation of Cage Model *in vitro*

caged vs. suspended release in vitro

In vitro release from cage (suspended in PBST pH 7.4) is similar to release of particles freely suspended in PBST pH 7.4

Validation of Cage Model *in vivo*

Tr-A_2 Pharmacokinetics

- Delayed burst from cage (within first 24 hours)
	- Overall similar kinetics through one month
- Very low drug levels seen after 14 days (suggests release within this time frame)
	- Faster release in vivo as compared to in vitro is observed in cage as well as from freely suspended particles

Tr-A release is much faster *in vivo* than *in vitro*

- o Release *in vivo* was measured using cage model
- o Drug release determined by measuring drug remaining in microspheres
- o Tr-A_1 release thru 14d:

o Tr-A_2 release thru 14d:

Tr-A_1: Reduced pH and plasticizer accelerate release and erosion *in vitro*

- Two conditions of slightly accelerated Tr-A release:
	- 1. PBS + 1.0% TC
	- 2. PBST pH 6.5

TC changes mechanism of *in vitro* release

Half times to release and mass loss (days)

Tr-A_1: *in vitro* kinetics of PLGA MW and water uptake

HYDROLYSIS WATER UPTAKE

- Slightly accelerated hydrolysis in two conditions:
	- 1. PBS + 1.0% TC
	- 2. PBST pH 6.5
- Water uptake kinetics appear not to influence release from Tr-A 1

Tr-A_1: Diffusion of bodipy in degrading microspheres

Tr-A_2: Most formulations also erosion-controlled *in vitro*

Half times to release and mass loss (days)

Assessment of release mechanisms from microspheres recovered from in vivo cage implantation

Tr-A_1: release and mass loss accelerated *in vivo*

- Release and mass loss are faster *in vivo* than *in vitro*
	- Accelerated erosion *in vivo*
- t_{50} release $\approx t_{50}$ mass loss in both cases : suggests erosion-controlled release

Hydrolysis kinetics and water uptake increased *in vivo*

- Water uptake much higher *in vivo* than *in vitro* (PBST pH 7.4)
- Hydrolysis of PLGA faster *in vivo* than *in vitro*
	- Likely contributes to accelerated mass loss and release

Tr-A_1: Diffusion of bodipy in degrading microspheres not so different

Tr-A_2: release and mass loss accelerated *in vivo*

Half times to release and mass loss

- Release and mass loss are faster *in vivo* than *in vitro*
	- Accelerated erosion *in vivo*
- t₅₀ release << t₅₀ mass loss *in vivo*
	- suggests another mechanism may contribute to accelerated release

Degradation and water uptake increase *in vivo*

- Water uptake much higher *in vivo* than *in vitro* (PBST pH 7.4)
- Hydrolysis of PLGA faster *in vivo* than *in vitro*
	- Likely contributes to accelerated mass loss and release

Tr-A_2: Solid state diffusion of bodipy not so different

- Internal pore formation visible following 14 days *in vivo*
	- Not evident following 14 day release *in vitro*

Pore localization of Bodipy suggests osmotically induced aqueous pore diffusion as a mechanism of release *in vivo*

Tr-A_2 particles following 2 weeks in subcutaneous cage implant

Conclusions

- o Cage implants can be used to uncover valuable mechanistic data concerning *in vivo* release from PLGA LARs -- by solving the problem of difficult recovery of intact microspheres after administration
- o Initial data suggest that PLGA release kinetics in the cage is predictive of *SC in vivo* release after the initial burst (similar PK w/ and w/o cage)
- o Release of steroids from PLGA is generally faster *in vivo* than common *in vitro* release conditions
- o Some causes of more rapid *in vivo* release:
	- o Increased water uptake
	- o Increase polymer degradation and erosion kinetics
	- o Potential for osmotic pressure-mediated pore diffusion
- This approach may be useful to develop mechanistic IVIVCs

Acknowledgements

Lab members

Financial support

Tianhong Zhou * Gaozhong Zhu * Juan Wang * Wenlei Jiang * Julia Marinina * Chengji Cui * Jichao Kang * Longsheng Lai * Lei Li * Amy Ding * Mangesh Deshpande * Yanqiang Zhong * David Gu * Christian Wischke * Andreas Sophocleous * Yajun Liu * Thiren Patel Rose Ackermann Jia Zhou Kashappa Desai * Vesna Milacic * Margaux Balagna * * former lab members

NIH, Novartis, Merck, Dow, Coulter, **FDA**

Collaborators

David J. Mooney (Harvard) Susan R. Mallery (OSU) John F. Carpenter (Univ Colorado, Denver) Anna Schwendeman (U of M) Ji-Xin Cheng (Purdue) Michael Thouless (U of M) Mark Prausnitz (Georgia Tech) Mark Meyerhoff (U of M)

Li Zhang *Kelly Hansen Karl Olsen Karthik Pasupati Sam Reinhold * (Keiji Hirota Konak Shah J. Max Mazzara Ying Zhang * The Brittany Bailey Morgan Giles Rae Sung Chang Xiao Wu * **Amy Doty** Kari Nieto Gergely Lautner

Current group

Acknowledgements

TC accelerates hydrolysis of PLGA in Tr-A_2

- Tr-A_2 formulation: PLGA 50:50, ester end capped
	- Original molecular weight (as determined in our lab by GPC) \approx 54KDa

- Accelerated hydrolysis in one condition:
	- 1. PBS + 1.0% TC

TC accelerates release and mass loss from Tr-A_2

- Accelerated release in PBS + 1.0% TC
	- Accelerated erosion also evident in this condition

