

Steven P. Schwendeman Department of Pharmaceutical Sciences

and the Biointerfaces Institute University of Michigan

Ann Arbor, MI 48109 USA

Schwendeman lab

Biointerfaces Institute, North Campus Research Complex Department of Pharmaceutical Sciences

Examples of PLGA microspheres used clinically

	Name	Company	Disease
Peptides	Sandostatin [©] LAR [©]	Novartis	Acromegaly
	Lupron [©]	TAP	Prostate and breast cancer
	Decapeptyl [©] Depot	Ferring	Prostate cancer, endometriosis
	Trelstar [©]	Pfizer	Prostate cancer
	Pamorelin ©	Ipsen	Prostate cancer
	Somatuline [©] LA	lpsen	Acromegaly
	Suprecur MP [©] (Japan)	Mochida	Endometriosis
Proteins	Nutropin Depot [®]	Genentech	Pediatric GH deficiency
Small	Vivitrol [©]	Cephalon	Alcoholism
Mol.	Risperidal [©] Consta [©]	Janssen	Schizophrenia
	Arestin [©]	OraPharma	Peridontal disease
	Parlodel LA©	Sandoz	Parkinson's, acromegaly

Minimally invasive delivery of large molecules - Battle of GLP-1s

- Bydureon Once-weekly injection
 Exenatide-encapsulated in PLGA
 microspheres (FDA approved 2012)
- Victoza Once-daily injection
 Liraglutide-lipid/AA modification for
 increasing circulation time

Controlled release in vivo often <u>faster</u> than in vitro

IN VITRO

- Triphasic release
- Initial Burst 20-30%
- Lag phase 5-9 days
- Total release in 30-35 days

IN VIVO

- Biphasic Release
- Initial Burst 15-45%
- No apparent lag phase
- Total Release in 12-16 days

Polymer degradation can also be faster in vivo

Biomaterials

Biomaterials 20 (1999) 1057-1062

Factors affecting the degradation rate of poly(lactide-co-glycolide) microspheres in vivo and in vitro

M.A. Tracy*, K.L. Ward, L. Firouzabadian, Y. Wang, N. Dong, R. Qian, Y. Zhang

Alkermes Inc., 64 Sidney Street, Cambridge, MA 02139, USA

Received 20 January 1998; accepted 30 December 1998

Table 2

In vivo vs. in vitro degradation results for PLG 50:50 microspheres

Microsphere polymer type	In vivo rate constant $(\times 10^{-2}) (1/\text{days}) \#$	In vitro rate constant $(\times 10^{-2}) (1/\text{days}) \#$	Rate constant ratio in vivo/in vitro	Microsphere duration in vivo (days)	Microsphere duration in vitro (days)
Capped, 9.5 kD	-3.3 + 0.6	-1.8 + 0.3	1.8	50-60	≫60*
Capped, 12.7 kD	-4 ± 1	-2.4 ± 0.7	1.7	42-49	>60*
Uncapped, 8 kD	-13 ± 5	-5 ± 1	2.6	14-21	~35
Uncapped, 21 kD	-7.9 ± 0.8	-4.4 ± 0.8	1.8	21-28	>60*

* Last time point taken.

Errors are 95% confidence limits.

How is slow release commonly achieved from PLGA?

Combination of 3 basic phenomena —

- \diamond Diffusion
- ♦Osmotic pressure/swelling
- ♦ Bioerosion when polymer chains become small enough to give way to stresses and/or dissolve

Diffusion through pores

Osmotic pumping

Erosion

What factors can affect the release mechanism?

- Buffering system and capacity
- Ionic strength/osmotic pressure
- pH
- Volume/flow
- Enzymes
- Lipids
- Inflammatory response
- Unknown small molecules present in vivo

Long-term objective: Understand mechanistically in vivo controlled release from PLGA microspheres and develop mechanism-based IVIVCs

Drug release from PLGA microparticles *in vitro*

Knowledge Gap How do these differ? Why do these differ?

Drug release from PLGA microparticles *in vivo*

Measure relevant time scales— $\tau_{release}$ $\tau_{erosion}$ $\tau_{water uptake}$ $\tau_{hydrolysis}$ $\tau_{diffusion}$

Two Triamcinolone acetonide (Tr-A) PLGA Microsphere Formulations

In vitro release methods

Release media

- Phosphate buffered saline + 0.02% Tween 80 (PBST)
 - pH 7.4 (standard condition)
 - pH 6.5
- HEPES buffered saline pH 7.4 + 0.02% Tween 80
- PBS + 1.0% triethyl citrate (TC)

Method

- 5mg (approx) incubated in 50mL media
- 37°C, mild agitation
- Particles centrifuged and media completely removed and replaced

Analyses (release and mechanisms of release)

- Release media analyzed for drug content by HPLC
- Molecular weight determined by GPC
- Mass loss and water uptake determined gravimetrically
- Particles incubated in BODIPY to determine diffusion coefficient

au_{release}

$\tau_{\text{hydrolysis}}$

 $au_{\text{mass loss}}$; $au_{\text{water uptake}}$

 $au_{\mathsf{diffusion}}$

In vivo release methods

- Measure PK (indirect)
- Recover microspheres after injection

Problem!! – How to recover microspheres intact after administration – we don't see them??

We want to to understand mechanism and therefore want to measure— $\tau_{release}$ $\tau_{hydrolysis}$ $\tau_{mass loss}$; $\tau_{water uptake}$ $\tau_{diffusion}$

How can we recover microspheres simply *In vivo*?

The Cage implant—

 Developed by Marchant *et al.* for evaluation of biocompatibility of biomaterials

Cage Model Design

Cages:

Stainless steel mesh (37µm openings) Silicone tubing Silicone elastomer Vulcanize and by autoclave

Loading of Microspheres into Cages:

- 1. Microspheres are suspended in an injection medium containing 1% CMC
- 2. Suspension is injected (via 20g needle) through silicone tubing into cage
- 3. Loaded cages are suspended in saline solution until implantation

Cage Implantation:

- 1. Animals are anesthetized and surgical site is sterilized
- 2. Single incision is made on the flank and a subcutaneous pocket is created
- 3. Cage is implanted into the pocket
- 4. Incision is closed using veterinary adhesive

Validation of Cage Model in vitro

caged vs. suspended release in vitro

In vitro release from cage (suspended in PBST pH 7.4) is similar to release of particles freely suspended in PBST pH 7.4

Validation of Cage Model in vivo

Tr-A_2 Pharmacokinetics

- Delayed burst from cage (within first 24 hours)
 - Overall similar kinetics through one month
- Very low drug levels seen after 14 days (suggests release within this time frame)
 - Faster release in vivo as compared to in vitro is observed in cage as well as from freely suspended particles

Tr-A release is much faster in vivo than in vitro

- Release *in vivo* was measured using cage model
- Drug release determined by measuring drug remaining in microspheres
- Tr-A_1 release thru 14d:

in vitro	28.4 ± 0.8%
in vivo	91.9±0.8%

o Tr-A_2 release thru 14d:

in vitro	7.4 ± 1.0%
in vivo	67.3 ± 1.3%

Tr-A_1: Reduced pH and plasticizer accelerate release and erosion *in vitro*

- Two conditions of slightly accelerated Tr-A release:
 - 1. PBS + 1.0% TC
 - 2. PBST pH 6.5

TC changes mechanism of in vitro release

Half times to release and mass loss (days)

	PBST pH 7.4	PBST pH 6.5	PBS + 1.0% TC	HEPES pH 7.4
t ₅₀ release	19.3 ± 0.5	16.6 ± 0.4	8.5 ± 0.3	18.1 ± 0.2
t ₅₀ mass loss	24.0 ± 3.9	16.1 ± 1.3	19.3 ± 1.1	17.6 ± 1.1

Tr-A_1: in vitro kinetics of PLGA MW and water uptake

HYDROLYSIS

WATER UPTAKE

- Slightly accelerated hydrolysis in two conditions:
 - 1. PBS + 1.0% TC
 - 2. PBST pH 6.5
- Water uptake kinetics appear not to influence release from Tr-A_1

Tr-A_1: Diffusion of bodipy in degrading microspheres

Tr-A_2: Most formulations also erosion-controlled *in vitro*

Half times to release and mass loss (days)

				PBST pH 7.	.4 1	PBST pH 6.	5	PBS + 1.0% TC	HEPES pH 7.4
		t ₅₀ rele	ease	46.9 ± 0.6	5	52.1 ± 1.1		25.1 ± 0.2	46.5 ± 0.4
120	.00	t ₅₀ mas	s loss	58.1 ± 7.4		46.1 ± 1.2		17.5 ± 1.7	50.7 ± 2.0
cumulative release (%)	.00 .00 .00 .00					 PBST pH 7.4 PBST pH 6.5 PBS + 1.0% Te HEPES pH 7.4 release = mas 	C 1 ss loss		
C	.00	45	25		75	05	445		
	-5	15	35	55	/5	95	115		
			m	ass loss (%)					

Assessment of release mechanisms from microspheres recovered from in vivo cage implantation

Tr-A_1: release and mass loss accelerated in vivo

- Release and mass loss are faster in vivo than in vitro
 - Accelerated erosion *in vivo*
- t_{50} release $\approx t_{50}$ mass loss in both cases : suggests erosion-controlled release

Hydrolysis kinetics and water uptake increased in vivo

- Water uptake much higher in vivo than in vitro (PBST pH 7.4)
- Hydrolysis of PLGA faster *in vivo* than *in vitro*
 - Likely contributes to accelerated mass loss and release

	in vitro	in vivo
First order rate constant (k)	0.038 day ⁻¹	TBD

Tr-A_1: Diffusion of bodipy in degrading microspheres not so different

Tr-A_2: release and mass loss accelerated in vivo

Half times to release and mass loss

	in vitro	in vivo
t ₅₀ release	46.9 ± 0.6	6.5 ± 2.1
t ₅₀ mass loss	58.1 ± 7.4	18 (approx.)

- Release and mass loss are faster in vivo than in vitro
 - Accelerated erosion in vivo
- t₅₀ release << t₅₀ mass loss in vivo
 - suggests another mechanism may contribute to accelerated release

Degradation and water uptake increase in vivo

- Water uptake much higher *in vivo* than *in vitro* (PBST pH 7.4)
- Hydrolysis of PLGA faster *in vivo* than *in vitro*
 - Likely contributes to accelerated mass loss and release

	in vitro	in vivo
First order rate constant (k)	0.040 day ⁻¹	0.065 day ⁻¹

Tr-A_2: Solid state diffusion of bodipy not so different

- Internal pore formation visible following 14 days in vivo
 - Not evident following 14 day release in vitro

Pore localization of Bodipy suggests osmotically induced aqueous pore diffusion as a mechanism of release *in vivo*

Tr-A_2 particles following 2 weeks in subcutaneous cage implant

Conclusions

- Cage implants can be used to uncover valuable mechanistic data concerning *in vivo* release from PLGA LARs -- by solving the problem of difficult recovery of intact microspheres after administration
- Initial data suggest that PLGA release kinetics in the cage is predictive of *SC in vivo* release after the initial burst (similar PK w/ and w/o cage)
- Release of steroids from PLGA is generally faster *in vivo* than common *in vitro* release conditions
- Some causes of more rapid *in vivo* release:
 - o Increased water uptake
 - Increase polymer degradation and erosion kinetics
 - Potential for osmotic pressure-mediated pore diffusion
- This approach may be useful to develop mechanistic IVIVCs

Acknowledgements

Lab members

Financial support

Tianhong Zhou * Gaozhong Zhu * Juan Wang * Wenlei Jiang * Julia Marinina * Chengji Cui * Jichao Kang * Longsheng Lai * Lei Li * Amy Ding * Mangesh Deshpande * Yangiang Zhong * David Gu * Christian Wischke * Andreas Sophocleous * Li Zhang * Sam Reinhold * Ying Zhang * Xiao Wu * Yajun Liu * Kashappa Desai * Vesna Milacic * Margaux Balagna * * former lab members

NIH, Novartis, Merck, Dow, Coulter, FDA

Collaborators

David J. Mooney (Harvard) Susan R. Mallery (OSU) John F. Carpenter (Univ Colorado, Denver) Anna Schwendeman (U of M) Ji-Xin Cheng (Purdue) Michael Thouless (U of M) Mark Prausnitz (Georgia Tech) Mark Meyerhoff (U of M)

Kelly Hansen Keiji Hirota Brittany Bailey **Amy Doty** Hiren Patel Karl OlsenKarthik PasupatiRonak ShahJ. Max MazzaraMorgan GilesRae Sung ChangKari NietoGergely LautnerRose AckermannJia Zhou

Current group

Acknowledgements

TC accelerates hydrolysis of PLGA in Tr-A_2

- Tr-A_2 formulation: PLGA 50:50, ester end capped
 - Original molecular weight (as determined in our lab by GPC) \approx 54KDa
- Accelerated hydrolysis in one condition:
 - 1. PBS + 1.0% TC

TC accelerates release and mass loss from Tr-A_2

- Accelerated release in PBS + 1.0% TC
 - Accelerated erosion also evident in this condition

