A Model- and Systems-Based Approach to Efficacy and Safety Questions Related to Generic Substitution

Stephan Schmidt, B.Pharm., Ph.D., F.C.P.

Certara Professor Associate Director Center for Pharmacometrics and Systems Pharmacology Associate Professor & Associate Chair Department of Pharmaceutics (Lake Nona) University of Florida at Lake Nona

A Model- and Systems-Based Approach to Efficacy and Safety Questions Related to Generic Substitution

Background:

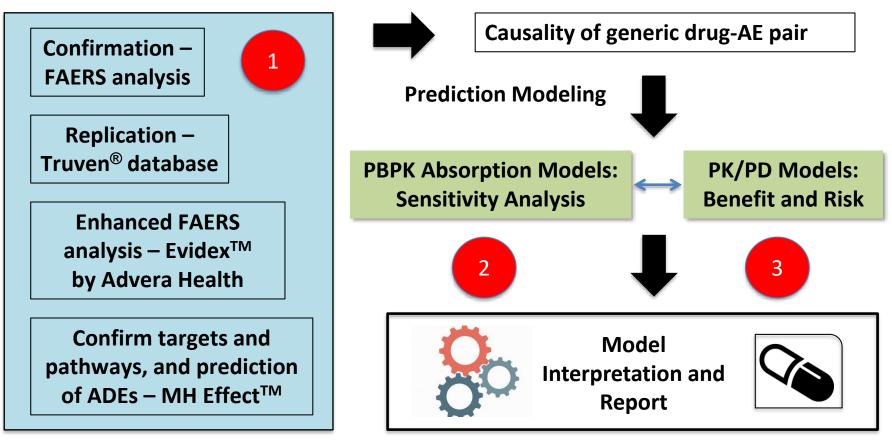
- ~88% of prescription drugs filled in the U.S. are generic
- ~\$1.68 Trillion of estimated cost savings for U.S. health system between 2005 and 2014
- U.S. FDA occasionally receives complaints about purported adverse events due to lack of efficacy or safety after switching from brand to generic
- Assessment of whether or not these complaints are real can be challenging

Research Strategy:

- To develop a quantitative and integrative approach that will separate postmarketing "signals from noise"
- If the "signal" is credible, develop a strategy using quantitative methods and modeling to provide insight into causal mechanisms

2

Basu et al. accepted for publication in J Clin Pharmacol., 2017


5U01FD005210-04

Collaboration with Drs. Lesko (CPSP), Trame (CPSP), Vozmediano (CPSP), Bihorel (CPSP), Brown (COP-POP), Fang (FDA), Lionberger (FDA)

Lesko et al. accepted for publication in J Clin Pharmacol., 2017

Analysis Workflow

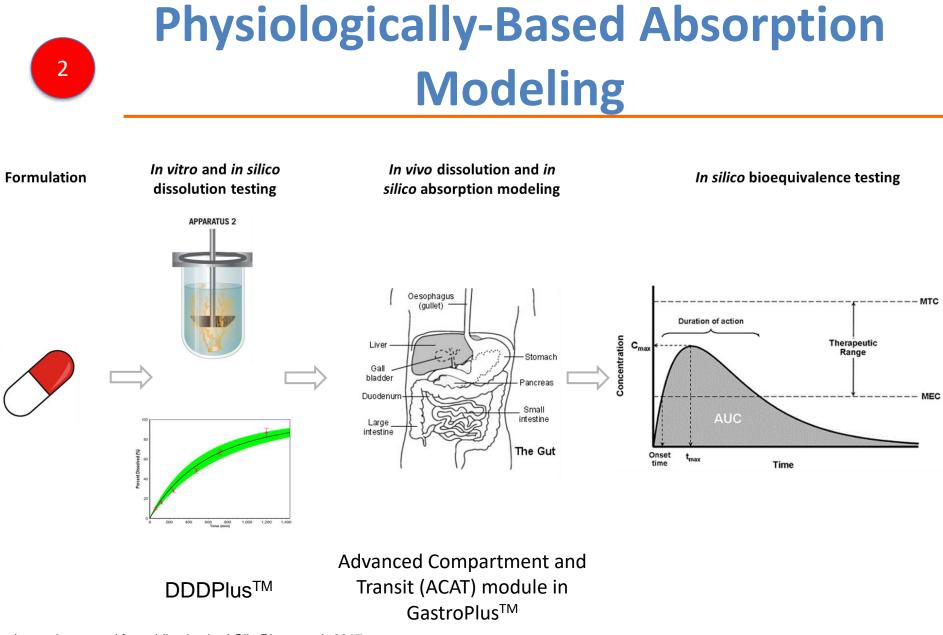
ADE: FAERS, consumer complaints, <u>www.peoplespharmacy.com</u>, clinical studies, ISMP and other public databases

Drugs and Formulations Selected To Demonstrate a Wide Range of Applications

Case I: anti-epileptic drugs considers BCS classification that can have a significant effect on absorption. BCS class II (carbamazepine, lamotrigine and phenytoin) and BCS class III (gabapentin and levetiracetam)

Case II: metoprolol XL examines a complex CR formulation to predict PK and PD profiles from a PSA and differences in *in vitro* dissolution

Case III: anticoagulants that belong to the same therapeutic class (DOACs) that are not yet available as generics to gain a mechanistic understanding of potential biolNequivalence



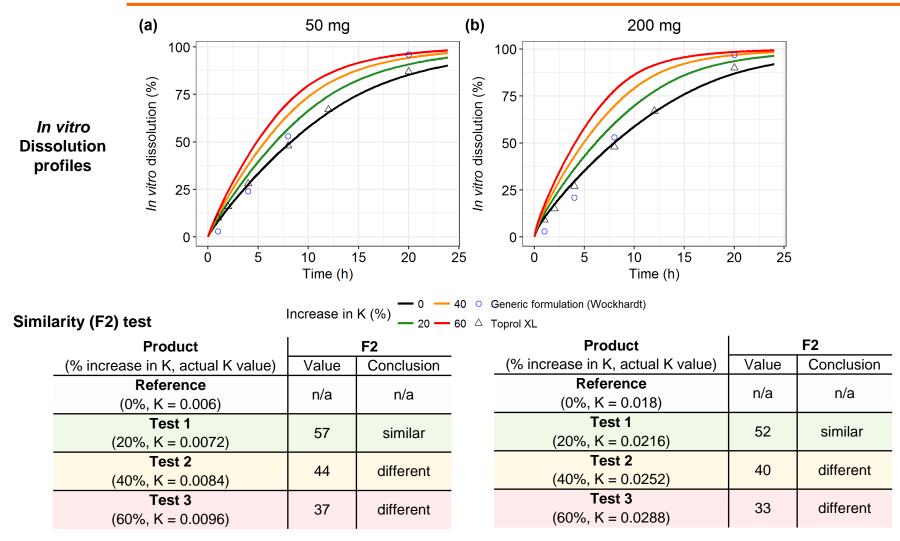
Signal Detection

- Formulation problems were reported within the first use of metoprolol XL and were public knowledge within 1-year of launch
- Hypotheses for detecting formulation issues:
 - Generic uptake/market share will be decreased
 - Patients will **discontinue** treatment and/or **switch back** to trade formulations at a higher rate
 - Event rates for indicated conditions will be elevated for generic vs. trade formulations
- To provide an active comparison:
 - Amlodipine/Benazepril was approved on same date and launched at about the same with no known formulation issues

Rate Ratio Generic vs. Trade (METO)								
		MI	HF	Hypertension	Hypotension	Syncope	Angina	Tachycardia
ER Visits 🗕	Primary	2.06	1.31	1.18	1.33	1.43	1.50	1.29
	Secondary	2.42	1.20	1.31	1.22	1.39	1.49	1.21
Hospitalizations –	Primary	1.00	1.00	1.08	0.92	0.99	1.22	1.12
	Secondary	1.11	1.08	1.44	1.25	0.95	1.39	1.12
			Rate Ra	itio Generic vs. Trad	e (AMLO)			
		MI	HF	Hypertension	Hypotension	Syncope	Angina	Tachycardia
ER Visits 🗕	Primary	0.86	0.77	0.68	0.84	0.85	1.07	0.91
	Secondary	0.95	0.83	0.82	0.82	0.86	0.95	0.88
Hospitalizations –	Primary	0.98	0.78	0.56	1.11	1.03	0.52	0.98
	Secondary	0.95	0.90	0.93	1.02	1.09	0.89	0.93

Clinical Event Rates

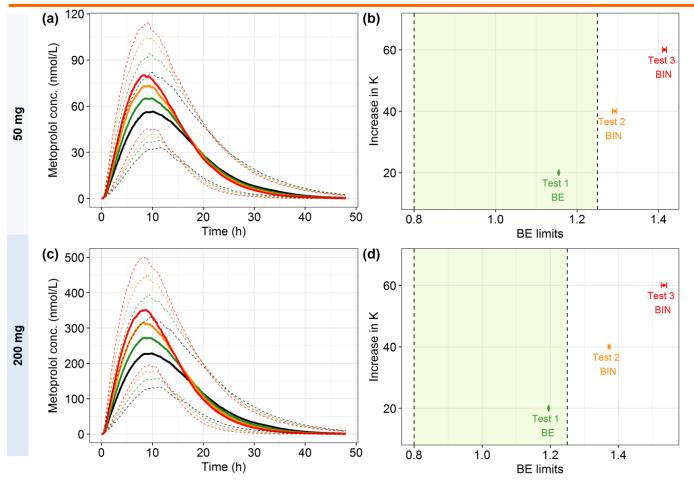
Lesko et al. accepted for publication in J Clin Pharmacol., 2017


Basu et al. accepted for publication in J Clin Pharmacol., 2017

5U01FD005210-04

Collaboration with Drs. Lesko (CPSP), Trame (CPSP), Vozmediano (CPSP), Bihorel (CPSP), Brown (COP-POP), Fang (FDA), Lionberger (FDA)

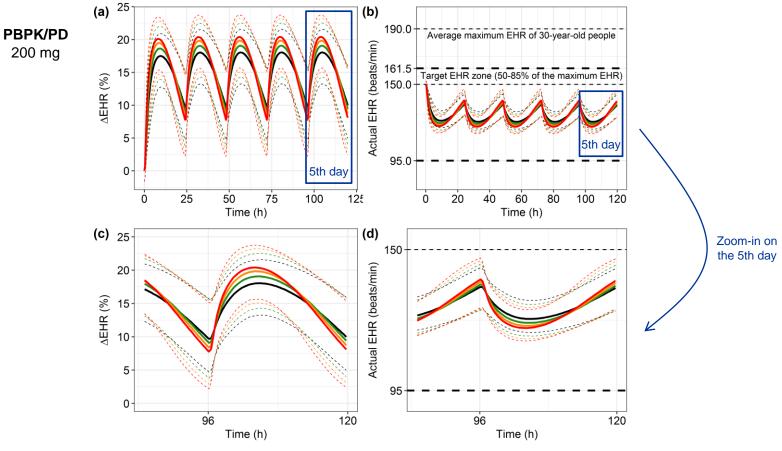
6


Prediction of *In Vitro* Dissolution Based on the Formulation's Composition & Manufacturing Conditions

Kim et al. manuscript in preparation

K: drug release rate constant, $F2 \ge 50$ indicates similarity. Lower the F2 value, lower the similarity, whereas F2 = 100 indicates absolute similarity. 7

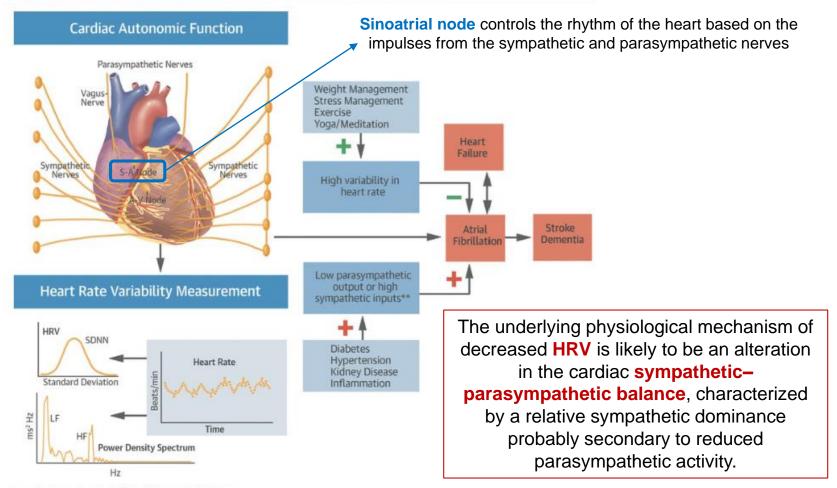
Effect of Drug Release on PK & Bioequivalence


Increase in K (%) - 0 - 20 - 40 - 60

K: drug release rate constant, The graphs in the left panel show the median (solid line), 5th and 95th percentiles (lower and upper dashed lines, respectively) of the concentration vs. time profiles (200 subjects). Bioequivalence (BE) was declared if a 90% confidence interval for the ratio of the geometric means of C_{max} and AUC falls within 80 to 125% (green shaded area). The graphs in the right panel shows the BE testing **8** using the more sensible parameter C_{max}. BIN: bio-in-equivalence.

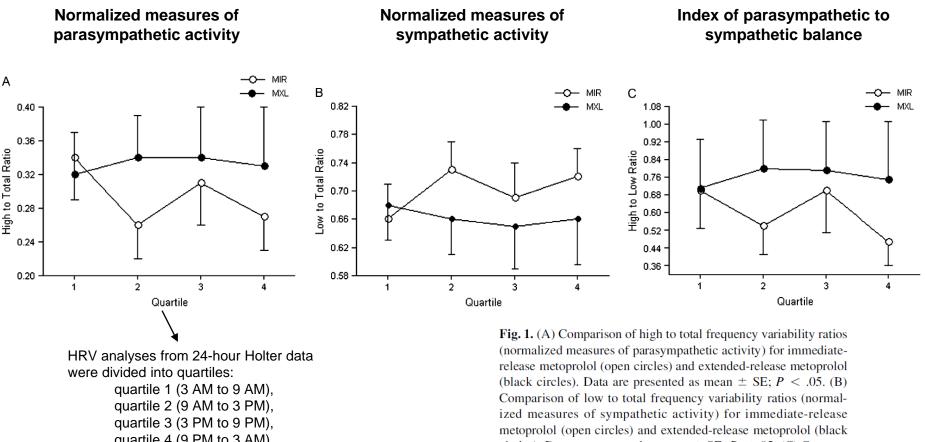
Kim et al. manuscript in preparation

Effect of Drug Release on PD & Therapeutic Equivalence


Increase in K (%) - 0 - 20 - 40 - 60

K: drug release rate constant, The graphs show the median (solid line), 5th and 95th percentiles (lower and upper dashed lines, respectively) of the PD profiles. EHR: exercise-induced heart rate, Δ EHR: percentage reduction in EHR.

Kim et al. manuscript in preparation Reference for the target EHR zone: h


Considering Anatomy & Physiology of the Heart

CENTRAL ILLUSTRATION Cardiac Autonomic Function and AF: Potential Interplay

Agarwal, S.K. et al. J Am Coll Cardiol. 2017;69(3):291-9.

Ongoing Research: Heart Rate Variability (HRV) Data Used for Model Development

quartile 4 (9 PM to 3 AM).

Figure from Aquilante et al, (2006) Journal of Cardiac Failure 12(3): 171-176.

circles). Data are presented as mean \pm SE; P < .05. (C) Comparison of high to low frequency variability ratios (index of parasympathetic to sympathetic balance) for immediate-release metoprolol (open circles) and extended-release metoprolol (black circles). Data are presented as mean \pm SE: P < .08.

Case Example: Metoprolol XL (BCS I, 2006)

- Indication: antihypertensive
- Generics: at least 3 from various manufacturers

 \diamond Report from physician to FDA on 06-23-2014

Patient: male Complaints: chest pains Reaction: increase HB, increase BP, dizziness, migraine AE resulted in. switch back to brand name product Suspect Drug. **metoprolol after substitution**

https://www.nytimes.com/2014/06/24/health/warning-unheeded-heart-drugs-are-recalled.html

Lesko et al. accepted for publication in J Clin Pharmacol., 2017

Basu et al. accepted for publication in J Clin Pharmacol., 2017

5U01FD005210-04

Collaboration with Drs. Lesko (CPSP), Trame (CPSP), Vozmediano (CPSP), Bihorel (CPSP), Brown (COP-POP), Fang (FDA), Lionberger (FDA)

Stephan Schmidt:

sschmidt@cop.ufl.edu Office: 407-313-7012 Cell: 352-408-2833