IVPT Studies During Topical Product Development

Leandro L. Santos, MS

Director, Clinical Research

Incyte Corporation

In Vitro Release Test (IVRT) and In Vitro Permeation Test (IVPT) Methods

Best Practices and Scientific Considerations for ANDA Submissions

August 18th, 2021

Disclaimer

The views and opinions expressed in this presentation are mine and made in my individual capacity. They must not be construed as representing the views or opinions of my employer.

Agenda

- Topical Drug Development and Innovation
- IVPT: A Versatile Technique
- IVPT Method Development/Validation Considerations
- IVPT General Recommendations

Skin Conditions, Quality of Life, and Cost

Years lost due to disability (YLD) ¹				
Cause	Global YLDs	YLD rank		

		Tallk
Low back pain	81M	1
Major depressive disorder	63M	2
Iron-deficiency anemia	43M	3
Skin conditions	34M	4
Neck pain	33M	5
Chronic obstructive pulmonary disease	29M	6

Average cost (USD) per diagnosed person ²				
Disease	*Cost			
Cutaneous lymphoma	\$3,182			
Ulcers	\$1,754			
Melanoma	\$1,366			
Non-melanoma skin cancer	\$1,252			
Connective tissue disease	\$1,177			
Bullous diseases	\$925			
Psoriasis	\$462			
Cutaneous infections	\$452			
Wounds and burns	\$440			

*Insured population (USA)

¹Hay, R.J. et al. The global burden of skin disease in 2010: an analysis of the prevalence and impact of skin conditions. *J Inv Dermatol* 134, 1527-1534, 2014. DOI: 10.1038/jid.2013.446. ²Lim, H.W. et al. Contribution of health care factors to the burden of skin disease in the United States. *J Am Acad Dermatol* 76, 1151-1160, 2017. DOI: http://dx.doi.org/10.1016/j.jaad.2017.03.006.

Innovation in Topical Development

New Chemical Entities (NCEs)/repurposed topical drugs approved: 2010-2020

Active	Year	Classification	Dosage form; drug load	Indication
Ingenol mebutate	2012	NCE	Gel; 0.015% and 0.05%	Actinic keratosis
Brimonidine	2013	Repurposed	Gel; 0.33%	Rosacea
Luliconazole	2013	NCE	Cream; 1%	Tinea pedis
Efinaconazole	2014	NCE	Solution; 10%	Onychomycosis
Tavaborole	2014	NCE	Solution; 5%	Onychomycosis
Ivermectin	2014	Repurposed	Cream; 1%	Rosacea
Crisaborole	2016	NCE	Ointment; 2%	Atopic dermatitis
Oxymetazoline	2017	Repurposed	Cream; 1%	Rosacea
Ozenoxacin	2017	NCE	Cream; 1%	Impetigo
Glycopyrrolate	2018	Repurposed	Solution (cloth); 2.4%	Hyperhidrosis
Trifarotene	2019	NCE	Cream; 0.005%	Acne vulgaris
Abametapir	2020	NCE	Lotion; 0.74%	Head lice
Clascoterone	2020	NCE	Cream; 1%	Acne vulgaris
Delgocitinib	2020	NCE (Japan)	Ointment; 0.5%	Atopic dermatitis
Tirbanibulin	2020	NCE	Ointment; 1%	Actinic keratosis

Note: 2010 and 2011: no NCE/repurposed topical molecule approved

15 approvals in **10** years

Challenges

- Design and/or selection of an optimal molecule can be challenging
- Reliable nonclinical disease models not widely available
- Complex formulation development (unique expertise)
- Target disease can increase challenges to dermal delivery and to achieving therapeutic levels

Santos, L.L.. et al. Developability profile framework for lead candidate selection in topical dermatology. Int J Pharm 604, 1-13, 2021. DOI: 10.1016/j.ijpharm.2021.120750.

IVPT Versatility

NCE Selection¹

- Prototypical solvent system
- NCE ranking

Formulation Selection²

- Formulation optimization and/or selection (FTIH)
- Evaluate effect of formulation CQA's on dermal delivery

Imaging techniques^{3,4}

- Spatial distribution of drug, excipients, and biomarkers
- Concentration-depth profile

Bioequivalence⁵

• Demonstrate differences between Test and Reference formulations

¹Santos, L.L., et al. In Vitro Permeation Test (IVPT) for Pharmacokinetic Assessment of Topical Dermatological Formulations. *Curr Prot Pharmacol* 91, e79, 2020. DOI: 10.1002/cpph.79. ²Gunther, C., et al. Comparison of in Vitro and In Vivo Percutaneous Absorption Across Human Skin Using BAY1003803 Formulated as Ointment and Cream. *Clin Pharm Drug Dev* 9, 582-592, 2020. DOI: 10.1002/cpdd.736 ³Bonnel, D., et al. MALDI imaging facilitates new topical drug development process by determining quantitative skin distribution profiles. *Anal Bioanal Chem* 410, 2815-2828, 2018. DOI: 10.1007/s00216-018-0964-3 ⁴Handler, A.M., et al. MALDI mass spectrometry imaging as a complementary analytical method for improved skin distribution analysis of drug molecule and excipients. *Int J Pharm*, 590, 2020. DOI: 10.1016/j.ijpharm.2020.119949 ⁵Shin, S.H., et al. Cutaneous Pharmacokinetics of Acyclovir Cream 5% Products: Evaluating Bioequivalence with an In Vitro Permeation Test and an Adaptation of Scaled Average Bioequivalence. Pharm Res, 37, 2020. DOI: 10.1007/s1095-020-02821-z

IVPT Method Development and Validation

IVPT Method

- Membrane
 - Source
 - Anatomical area
 - Thickness
 - Storage
- Diffusion cell type
 - VDCs
 - Flow-through
 - Other
 - Dosing area
- Receptor solution
 - Sink condition
 - Analyte stability
 - Compatibility with analytical method

- Experimental conditions
 - Number of donors/replicates
 - Duration
 - Dose
 - Sampling frequency
 - Membrane temperature
 - Mass balance
- Data reporting
 - Other
 - Tissue distribution

Bioanalytical Method

- Technique of choice:
 - LC-UV/DAD/FLD
 - LC-MS
 - LC-MS/MS
 - Other (e.g. SPE-MS/MS)
- Sample processing
 - Concentration, extraction or dilution
- Automation friendly
 - Liquid handling

IVPT: Human Skin

IVPT: Diffusion Cell Type

Santos, L.L., et al. In Vitro Permeation Test (IVPT) for Pharmacokinetic Assessment of Topical Dermatological Formulations. Curr Prot Pharmacol 91, e79, 2020. DOI: 10.1002/cpph.79.

IVPT: Bioanalytical Method

FDA Guidance for Industry on Bioanalytical Method Validation

- Linearity
- Accuracy and Precision
- Sensitivity
- Selectivity
- Specificity
- Dilution integrity
- Analytical carryover
- Recovery
- Analyte Stability
 - In experiment (receptor solution temperature)
 - Sample preparation (extraction)
 - Autosampler (long analytical runs, >24 hr)
 - Storage

- Simpler training, maintenance and troubleshooting
- Adequate when sample throughput is not a bottleneck
- May not provide enough sensitivity for samples from flow-through experiments
- Best sensitivity, selectivity, and specificity
- Allows faster run times
- Troubleshooting can be complex
- Substantial upfront investment (USD 500k+)

Santos, L.L., et al. In Vitro Permeation Test (IVPT) for Pharmacokinetic Assessment of Topical Dermatological Formulations. Curr Prot Pharmacol 91, e79, 2020. DOI: 10.1002/cpph.79.

IVPT: Experimental Design

		Typical parameters			
Evaluate flux decline to decide	Study duration	Varies	Single dose	Dose regimen	
TEWL; Electrical impedance; Tritiated water	Barrier integrity test	Acceptable criteria	5 – 15 mg/cm²	Dose amount	
	Skin surface temperature	32 ± 1 °C	Unoccluded	Dose occlusion	
Results during pilot study may suggest	Number of skin donors per treatment group	≥ 4 (minimum)	≥ 1 CM²	Dose area	< 1cm² may be available
number of donors and replicates	Number of replicates per donor, per treatment	≥ 4 (minimum)	Yes	Dose depletion	
Depending on experimental length (before/after peak flux)	Sampling Frequency	≥ 8 time points	Not for BE	Tissue distribution	Innovator's perspective

Santos, L.L., et al. In Vitro Permeation Test (IVPT) for Pharmacokinetic Assessment of Topical Dermatological Formulations. Curr Prot Pharmacol 91, e79, 2020. DOI: 10.1002/cpph.79.

IVPT: Method Validation Considerations

Dose amount

- Dose Amount
- Dose Duration
- Dose Concentration
- Altered Formulation

Suggested study design

- No less than 4 donors
- No less than 4 replicates per donor

Altered formulation evaluation: mean flux (ng/cm²/hr) (2 distinct experiments)

Points for consideration

- Qualitative discrimination
- Sufficient sensitivity
- Sufficient selectivity
- Sufficient discrimination

IVPT: Experimental Design Considerations

NCEs/formulations with very low skin flux (e.g. ≤ 1 ng/cm²/hr) may not display a **flux decline** (within a reasonable time) even in finite dosing

Flux plot, instead of cumulative amount, should be used to better visualize the data

Figure adapted from US Patent 10,195,160. Sonti, S; Thomas, J.R.; Lenn, J.; Santos, L.; Whiteman, J.; Doherty, M.Q.; Bedard, M.; Jain, P. Topical pharmaceutical compositions. February 5th, 2019.

IVPT: Experimental Design Considerations

- For NCEs, certain aspects, such as tissue distribution, may be relevant.
- Example: Cream B appears to demonstrate preferential delivery to dermis (site of action) compared to receptor solution
- Time-course evaluating epidermis/dermis levels is ideal, but resourceconsuming

Adapted from oral presentation: Santos, L. Topical Drug Development – Evolution of Science and Regulatory Policy, July 30th, 2019. IVPT: Practical Considerations in Its Method Development and Implementation

IVPT: General Recommendations

- Provide hands-on training for new hires, and evaluate experimental proficiency
 - Choose a formulation in which skin flux profile is well characterized by the lab
 - New hires should perform all study steps with minimal supervision, and able to do data reporting/discussion
- Ensure a standard "check list" is completed prior to starting an experiment
 - Check for air bubbles before and during the experiment;
 - Ensure receptor solution is flowing through the tubing;
 - Ensure circulating water baths are working properly, etc
- Have a reference document with troubleshooting tips for both IVPT and the bioanalytical equipment of choice some examples:
 - **IVPT problem example:** *Receptor solution leaking into donor compartment*
 - **Possible cause(s):** Perforation in skin section; skin improperly secured in diffusion cell
 - **Possible solution(s):** *Exclude or replace replicate*
 - LC-MS/MS problem example: High background signal at analyte retention time
 - **Possible cause(s):** Contaminated solvents (with analyte or otherwise) or matrix interferents
 - **Possible solution(s):** Utilize fresh, high-purity solvents, alter chromatography in attempt to separate analyte and matrix interferents, and/or utilize alternative MS/MS transitions

Panel discussion