

When Do Formulation Differences in Topical Dosage Forms Impact Their Function: Emerging Insights and Implications for Bioequivalence Approaches

SBIA 2020: Advancing Innovative Science in Generic Drug Development Workshop

Session 3: Future Directions, Emerging Technology, and Current Thinking on Alternative BE Approaches

Topic 2: Topical Dermatologic Products

Sam Raney, PhD

Lead for Topical and Transdermal Drug Products

Division of Therapeutic Performance, Office of Research and Standards

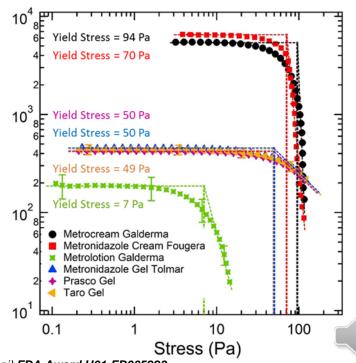
Office of Generic Drugs | CDER | U.S. FDA

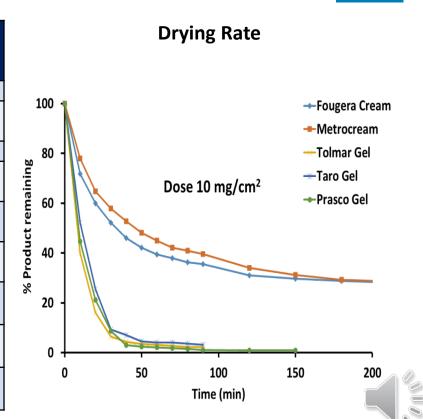
September 30, 2020

Disclaimer

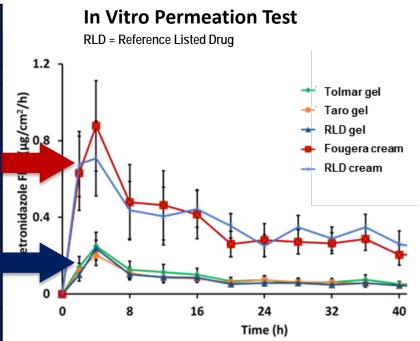
This presentation reflects the views of the author and should not be construed to represent FDA's views or policies.

Topical Dermatological Formulations

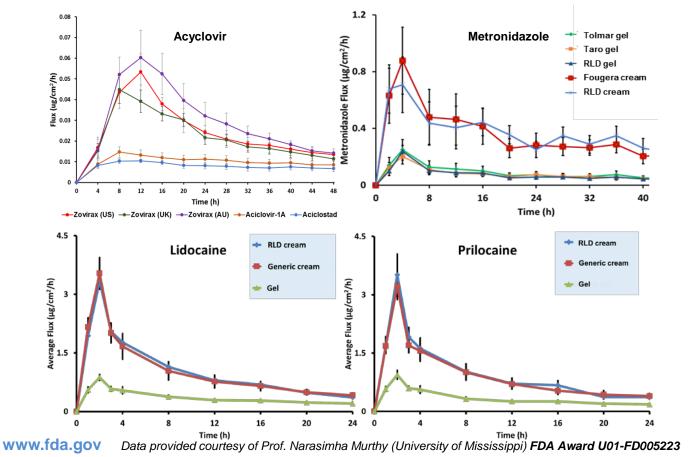

- The components (Q1) and quantitative composition (Q2) of a topical product (and how it is manufactured) can modulate its physical and structural arrangement of matter (Q3)
- These Q3 characteristics influence molecular interactions that control the rate and extent of topical bioavailability
- One approach to developing generic topical products is to:
 - Characterize the complexity of the reference product
 - Match the Q1, Q2, and Q3 characteristics of the reference product
- **⇒** How closely should test and reference products be matched?


Quality Attribute	Metrocream [®]	Generic Cream (Fougera)	Metrogel [®]	Generic Gel (Tolmar)	Generic Gel (Taro)			
рН	4.8	5.1	5.2	5.0	5.4			
Density (g/cc)	1.02	1.02	1.01	1.02	1.02			
WOA (g.sec)	57.6	63.9	39.4	43.9	42.0			
Particle size (µm)	Active ingredient is completely dissolved							
Drug in Aq (mg/g)	4.20	2.92						
Drug in Oil (mg/g)	2.58	3.94						
Solvent Activity	0.977	0.974	0.992	0.994	1.002			
Globule size, d ₅₀ (μm)	2.8	2.2						
Drying,T ₃₀ (min)	17	11.4	5.5	4.7	6.5			

Rheology



Quality Attribute	Metrocream [®]	Generic Cream (Fougera)	Metrogel [®]	Generic Gel (Tolmar)	Generic Gel (Taro)		
рН	4.8	5.1	5.2	5.0	5.4		
Density (g/cc)	1.02	1.02	1.01	1.02	1.02		
WOA (g.sec)	57.6	63.9	39.4	43.9	42.0		
Particle size (µm)	Active ingredient is completely dissolved						
Drug in Aq (mg/g)	4.20	2.92					
Drug in Oil (mg/g)	2.58	3.94					
Solvent Activity	0.977	0.974	0.992	0.994	1.002		
Globule size, d ₅₀ (µm)	2.8	2.2					
Drying,T ₃₀ (min)	17	11.4	5.5	4.7	6.5		



Quality Attribute	Metrocream [®] (RLD Cream)	Generic Crear (Fougera)	Metrogel [®] (RLD Gel)	Generic Gel (Tolmar)	Generic Gel (Taro)
рН	4.8	5.1	5.2	5.0	5.4
Density (g/cc)	1.02	1.02	1.01	1.02	1.02
WOA (g.sec)	57.6	63.9	39.4	43.9	42.0
Particle size (µm)		Active ingre			
Drug in Aq (mg/g)	4.20	2.92			
Drug in Oil (mg/g)	2.58	3.94			
Solvent Activity	0.977	0.974	0.992	0.994	1.002
Globule size, d ₅₀ (µm)	2.8	2.2			
Drying,T ₃₀ (min)	17	11.4	5.5	4.7	6.5

Topical Dermatological Formulations

- Clinical evidence has demonstrated the bioequivalence (BE) of several topical generics that are not necessarily Q1, Q2, or Q3 the same as the reference product
- An expanding body of evidence has demonstrated that these topical generics exhibit comparable cutaneous pharmacokinetics (PK) ...not only comparable clinical efficacy
- When do Q1, Q2, or Q3 differences impact the BE of topical products, and what may be acceptable differences between a test and reference product formulation?

Waiver of In Vivo Evidence of BE

Title 21 of the Code of Federal Regulations, Section 320.22

[21CFR320.22(b)]

- Parenteral solutions for injection or ophthalmic or otic solutions
 - ⇒ Should contain "the same active and inactive ingredients in the same concentration" as the reference product
 - ⇒ Q1 and Q2 sameness
- Topical solutions or solution-based foam aerosols
 - ⇒ Should contain "no inactive ingredient or other change in formulation ...that may significantly affect systemic or local availability"
 - ⇒ Not necessarily Q1 and Q2 sameness

Q3 Sameness vs. Similarity

An evolving concept <u>for topical dermatological products</u>

Q3 Sameness

Same Components & Composition as the Reference Product ± 5%, and **Same** Physical & Structural Properties

Q2 Sameness

Same Components & Composition as the Reference Product ± 5%

Q1 Sameness

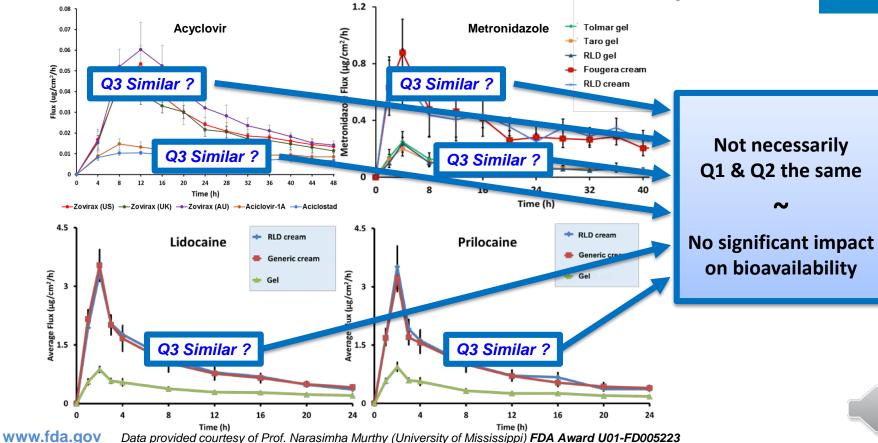
Same Components as the Reference Product

Q3 Similarity

Similar Components & Composition to the Reference Product, and Similar Physical & Structural Properties

No Difference

in inactive ingredients or other aspects of the formulation relative to the reference product


that may significantly affect local or systemic bioavailability

(e.g., Q1/Q2 sameness, but not necessarily)

Q3 Sameness vs. Similarity

What Do These Concepts Mean?

An evolving concept <u>for topical dermatological products</u>

What is the boundary that separates Q3 *Similar* from Q3 *Different*

What is the distinction between

'Q1/Q2 Sameness'

VS.

'No Difference'

that may significantly affect ocal or systemic bioavailabilit

Q3 Similarity

Similar Components & Composition to the Reference Product, and Similar Physical & Structural Properties

No Difference

in inactive ingredients or other aspects of the formulation relative to the reference product

that may significantly affect local or systemic bioavailability

(e.g., Q1/Q2 sameness, but not necessarily)

Q1/Q2 Sameness vs. 'No Difference'

- Determining the suitability of proposed test product formulations to demonstrate BE by a characterization-based approach:
 - An assessment of 'No Difference' in formulation is based upon the same principles as assessing Q1/Q2 sameness, including tolerances of ±5%
 - An assessment of 'No Difference' for topical dermatological products evaluates whether certain components and compositions may be acceptable for a proposed generic product, based upon information available to the Agency and/or based upon evidence submitted in an abbreviated new drug application (ANDA); i.e., evidence that there is no difference between the test and reference products in the local or systemic availability of the active ingredient

Evaluation of BE for Topical Products

- A Modular Framework for Characterization-Based BE
 - Qualitative (Q1) and Quantitative (Q2) Sameness or 'No Difference'
 - Physical and Structural (Q3) Sameness or 'Similarity'
 - **IVRT** (In Vitro Release Test)
 - IVPT (In Vitro Permeation Test)
- Other Types of Evidence to Support a Demonstration of BE
 - In Vivo Pharmacokinetic Studies
 - In Vivo Pharmacodynamic (e.g., Vasoconstrictor) Studies
 - In Vivo Comparative Clinical Endpoint BE Studies
 - In Silico Quantitative Methods, Modeling and Simulation

Conclusions

- Generic topical products are not required to be Q1/Q2 the same compared to the reference product
- Generic topical products should contain 'No Difference' in inactive ingredients or in other aspects of the formulation that may significantly affect local or systemic bioavailability
- Certain components and compositions may be acceptable for a proposed generic product, based upon information available to the Agency and/or based upon evidence submitted in an ANDA
- When the Q3 attributes of such a product match those of the reference product, but the underlying matter is not the same, it would not be considered Q3 the same, but rather, 'Q3 Similar'

Challenge Question

- Differences in inactive ingredients or in other aspects of a proposed test product formulation (relative to the reference product) may be acceptable when:
 - A. Differences are <u>never</u> acceptable
 - B. Differences are fine; *anything goes* for topical products
 - C. Information available to the Agency indicates that certain components and compositions of a proposed formulation may be acceptable
 - D. Evidence submitted in an ANDA demonstrates that specific differences between a test and reference product do not alter local or systemic bioavailability
 - E. C and D

Challenge Question

- Differences in inactive ingredients or in other aspects of a proposed test product formulation (relative to the reference product) may be acceptable when:
 - A. Differences are <u>never</u> acceptable
 - B. Differences are fine; <u>anything goes</u> for topical products
 - C. Information available to the Agency indicates that certain components and compositions of a proposed formulation may be acceptable
 - D. Evidence submitted in an ANDA demonstrates that specific differences between a test and reference product do not alter local or systemic bioavailability
 - E. C and D

Acknowledgements

U.S. Food & Drug Administration

- Priyanka Ghosh, PhD
- Tannaz Ramezanli, PharmD, PhD
- Markham C. Luke, MD, PhD
- Robert Lionberger, PhD
- Pahala Simamora, PhD
- Richard Chang, PhD
- Bing Cai, PhD

Research Collaborators

Funding for studies for which results were shown was made possible, in part, by U.S. FDA through:

FDA Award U01FD005223

Awarded to:

Prof. Narasimha Murthy, PhD The University of Mississippi

U.S. FOOD & DRUG ADMINISTRATION

