

A GENERIC DRUGS PERSPECTIVE ON THE USE OF IN VITRO ASSESSMENT METHODS

Bridging Results from Maximum Use Trials with Sunscreen Reformulations?

Presentation at the New York Society of Cosmetic Chemists Meeting: **An Update on the FDA New Proposed Sunscreen Regulation** January 29th, 2019, Iselin, New Jersey

Sam Raney, Ph.D.

Lead for Topical and Transdermal Drug Products U.S. Food and Drug Administration, Office of Generic Drugs Office of Research and Standards, Division of Therapeutic Performance

Disclaimer

- This presentation reflects the views of the author and should not be construed to represent FDA's views or policies.
- The information discussed has not necessarily been evaluated by the relevant FDA centers or offices that regulate cosmetics or sunscreen products, and concepts discussed should not be misconstrued as representing policies currently under consideration by FDA centers or offices that regulate cosmetics or sunscreen products.

Patient Access to Topical Products

- The vast majority (approximately 80%) of topical dermatological drug products have fewer than three generic competitors, and in many cases, have no approved generics at all.
- This may have been attributable to the historical barriers to the development of topical dermatological drug products, possibly including
 - Comparative clinical endpoint bioequivalence (BE) studies
 - The complex nature of topical formulations

Modular & Scalable BE Standards

- A <u>Modular</u> Framework for In Vitro BE Evaluation
 - **Q1/Q2** sameness of inactive ingredient components and quantitative composition
 - Q3 (Physical & Structural Characterization) as relevant to the nature of the product
 - **IVRT** (In Vitro Release Test) for moderately complex products
 - **IVPT** (In Vitro Permeation Test) or another bio-relevant assay for more complex drug products
- A <u>Scalable</u> Framework for BE Evaluation
 - In Vivo pharmacokinetic (PK) studies may be appropriate
 - In Silico computational modeling may be useful

Developing In Vitro BE Standards

- Q1/Q2 Sameness (components and composition of excipients) Mitigates the risk of <u>known failure modes</u> related to:
 - Irritation and sensitization
 - Formulation interaction with diseased skin
 - Stability, solubility, etc. of the drug
 - Vehicle contribution to efficacy

Formulations Can Alter Bioavailability

- It is widely understood that the formulation of a topical semisolid dosage form can influence its performance
- It is now increasingly clear how excipients may exert their influence, by modulating the physicochemical and microstructural arrangement of matter in the dosage form
- The resulting physical and structural characteristics of topical dosage forms, and their metamorphic properties on the skin, can directly influence topical bioavailability

Q3 Sameness for Topical Products

• An evolving concept for topical dermatological products

Q3 Sameness Same Components & Composition as the Reference Product ± 5%, & Same Physical & Structural Properties

Q2 Sameness Same Components & Composition as the Reference Product ± 5%

> Q1 Sameness Same Components as the Reference Product

Generally allowing for variability within the range characterized for batches of the reference product

Potentially allowing for a difference in the nominal amount of a pH adjusting agent to match the reference product

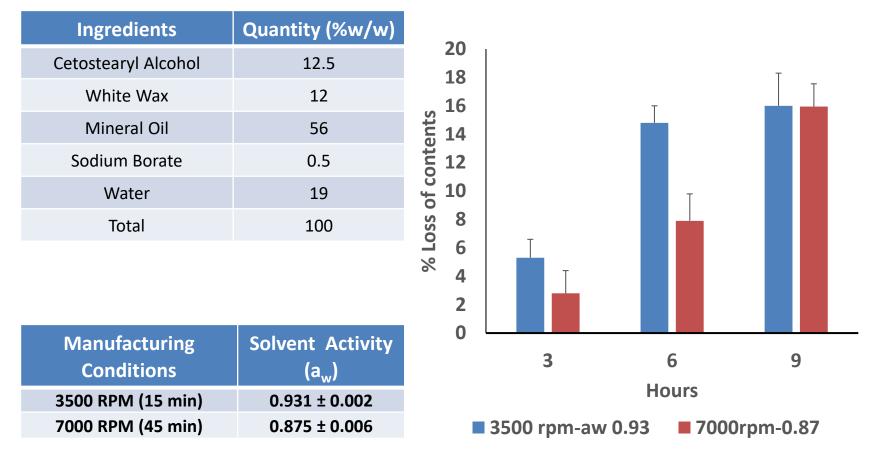
Generally allowing for variations in an ingredient that comply with the relevant compendial standard

Effects of Q1/Q2/Q3 on Bioavailability

- Q1, Q2 or Q3 differences can potentially affect:
 - The phase states and the arrangement of matter
 - Drug diffusion within the dosage form
 - Drug partitioning into the stratum corneum (SC)
 - Alteration of skin structure and chemistry
 - Drug diffusion within the skin itself
 - Drug delivery & bioavailability at the target site
 - Skin (de)hydration, irritation or damage
 - Metamorphosis of the dosage form on the skin
 - Thermodynamic activity profile of the drug
 - Thermodynamic effects and heat effects are areas of active research for topical semisolid products and transdermal delivery systems

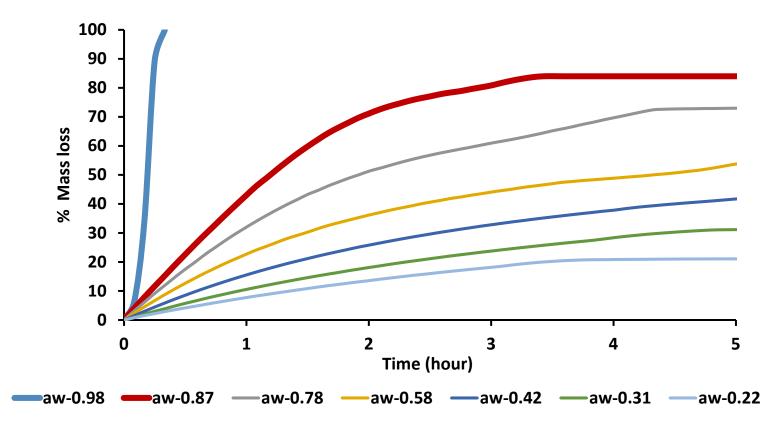
Developing In Vitro BE Standards

• Q3 (Physical and Structural) Similarity


Mitigates the risk of <u>potential failure modes</u> related to:

- Differences in Q1/Q2 sameness (± 5% tolerances)
- Differences in pH that may sting or irritate diseased skin
- Differences in the polymorphic form of the drug
- Differences in rheology that alter the spreadability, retention, or surface area of contact with the diseased skin
- Differences in entrapped air and drug amount per dose
- Differences in phase states and diffusion, partitioning, etc.
- Differences in metamorphosis and drying rates

Dosage Form Metamorphosis


• Solvent Activity of Q1/Q2 Identical Creams

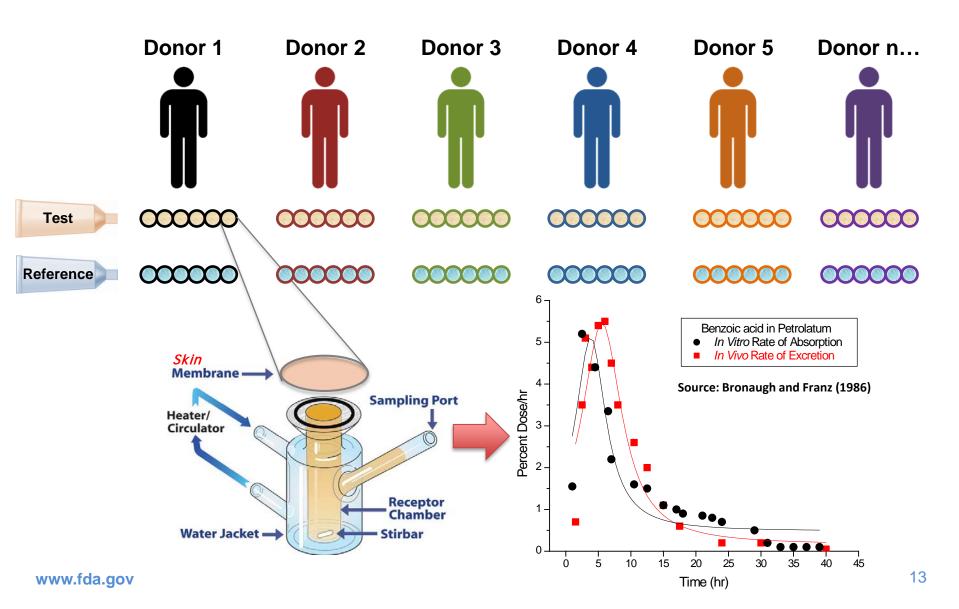
www.fda.gov Data provided courtesy of Prof. Narasimha Murthy (University of Mississippi) FDA Award U01-FD005223

Dosage Form Metamorphosis

- Solvent Activity $(a_s) = \rho/\rho_0$
 - ρ = partial vapor pressure of Solvents in the product
 - ρ_0 = vapor pressure of pure Solvent system

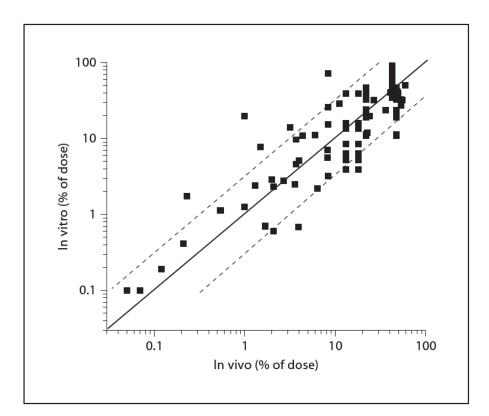
FD/

Developing In Vitro BE Standards


• IVPT (In Vitro Permeation Test): Cutaneous PK Study

Mitigates the risk of <u>other unknown failure modes</u> related to:

- Differences in Q1 and/or Q2
- Differences in physical and structural similarity
- Differences that may not be identified by other tests
- IVPT is a sensitive, discriminating indicator of relative BA
- IVPT results can exhibit in vitro in vivo correlation (IVIVC)
- IVPT studies can compare the relative bioavailability of sunscreen actives (or other components of interest) between a test and reference formulation


IVPT Study Design

IVPT: In Vitro In Vivo Correlation

• Lehman et al., 2011 (92 IVIVC Data Sets)

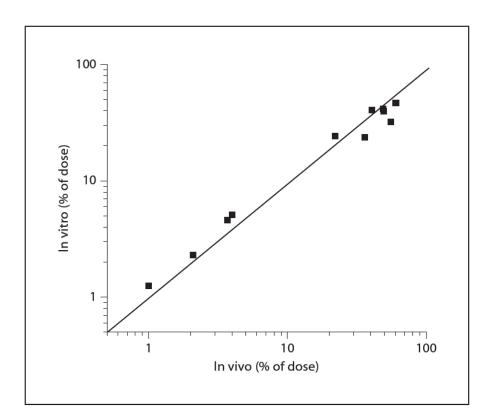
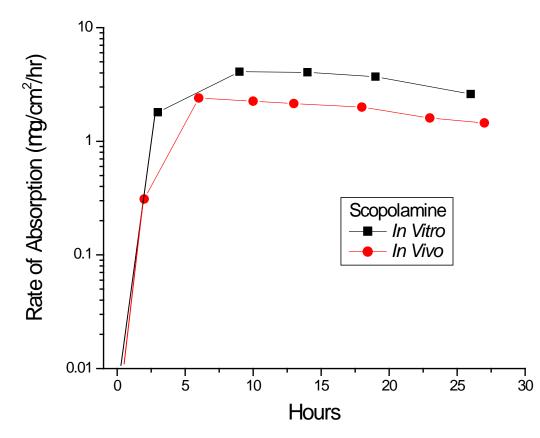


Fig. 1. IVIV ratios of total absorption for all 92 data sets plotted on log-log scale. The IVIV ratios ranged from 0.18 to 19.7, with an overall mean of 1.6. Solid line: ideal 1:1 correlation. Dashed lines: \pm 3-fold difference from ideal.

FD/

IVPT: In Vitro In Vivo Correlation

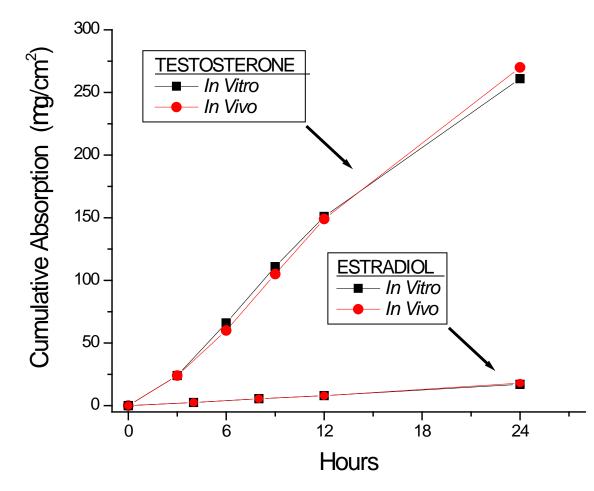
• Lehman et al., 2011 (92 IVIVC Data Sets)


Fig. 2. IVIV ratios of total absorption for 11 fully harmonized data sets plotted on log-log scale. The IVIV ratios ranged from 0.58 to 1.28, with an overall mean of 0.96. Line: ideal 1:1 correlation.

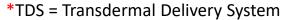
HD)

IVPT: In Vitro In Vivo Correlation

• Shaw et al., 1975

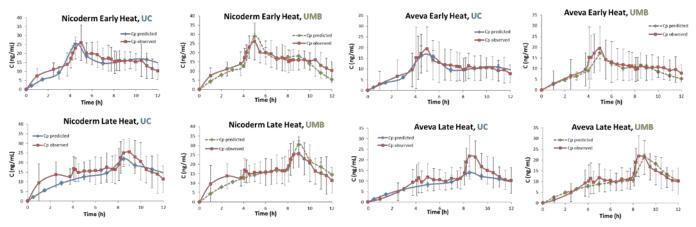

"... in vitro accurately predicted the situation which pertains in vivo."

FDA

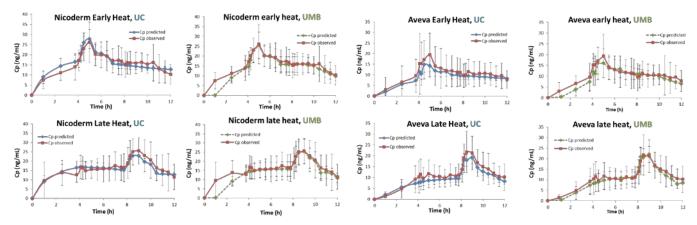

• Venkateshwaran S, 1997

FDA

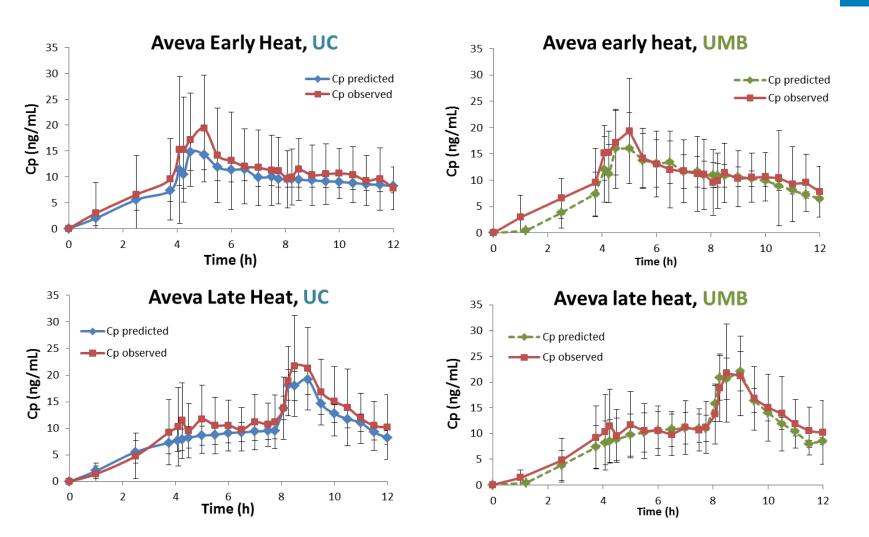
Nicotine TDS^{*} Heat Effects Studies


Aveva 20 29 Polyacrylate/Silicone Polyester backing $ \frac{20}{15} = \frac{29}{10} = \frac{1}{10} = \frac{1}{10}$				Adhesive type	Other inactive ingredients		
$heat (42 \pm 2^{\circ}C) from 8 to 9h$	Nicoderm CQ®	15.75	37	Polyisobutylene	Ethylene vinyl acetate-copolymer, polyethylene between pigmented and clear polyester backing		
$hicotine - Early Heat \qquad Heat (42 \pm 2^{\circ}C) from 4 to 5h$	Aveva	20	29	Polyacrylate/Silicone	Polyester backing		
TDS On Time (h) 4 9 12 Nicotine - Late Heat Heat (42 ± 2°C) from 8 to 9h TDS On		01 Concentratio -1	4				
Time (h) 4 9 12 Nicotine - Late Heat Heat (42 ± 2°C) from 8 to 9h TDS On							
Nicotine - Late Heat Heat (42 ± 2°C) from 8 to 9h TDS On Image: Comparison of the second seco	г	Time (h)			9 12		
TDS On			te Heat	Heat (42 ± 2°C)			
Time (h) 8 9 12			TC				
	_						

www.fda.gov Data provided courtesy of Prof. Audra Stinchcomb (University of Maryland) FDA Award U01-FD004955


Level A IVIVC/IVIVR for Nicotine TDS

• Approach I (prediction based upon in vitro data only)


Approach II (including an in vivo-derived heat factor)

Refer to Shin et al. (2018) In vitro-in vivo correlations for nicotine transdermal delivery systems evaluated by both in vitro skin permeation (IVPT) and in vivo serum pharmacokinetics under the influence of transient heat application. J Control Release. 270: 76-88. (Funded, in part, through **FDA award U01FD004955** (Dr. Audra Stinchcomb; University of Maryland, Baltimore) and **FDA award U01FD004942** (Dr. Kevin Li; University of Cincinnati)) www.fda.gov

19

Level A IVIVC/IVIVR for Nicotine TDS

Refer to Shin et al. (2018) In vitro-in vivo correlations for nicotine transdermal delivery systems evaluated by both in vitro skin permeation (IVPT) and in vivo serum pharmacokinetics under the influence of transient heat application. J Control Release. 270: 76-88. (Funded, in part, through **FDA award U01FD004955** (Dr. Audra Stinchcomb; University of Maryland, Baltimore) and **FDA award U01FD004942** (Dr. Kevin Li; University of Cincinnati)) www.fda.gov

20

FDA

Comprehensive Research Strategy

- FDA FDA/CDER/OTS/DPQR (USA)
- MISSISSIPPI University of Mississippi (USA)
 - University of South Australia (and Germany)

In Vitro Release Test (IVRT)

FDA • FDA/CDER/OTS/DPQR (USA) IVRT

Joanneum Research (Austria)

Cutaneous PK: In Vitro Permeation Test (IVPT)

- MISSISSIPPI University of Mississippi (USA) IVPT
 - UNIVERSITY University of Maryland (USA) IVPT
 - University of South Australia
 IVPT

Cutaneous PK: In Vivo Methods

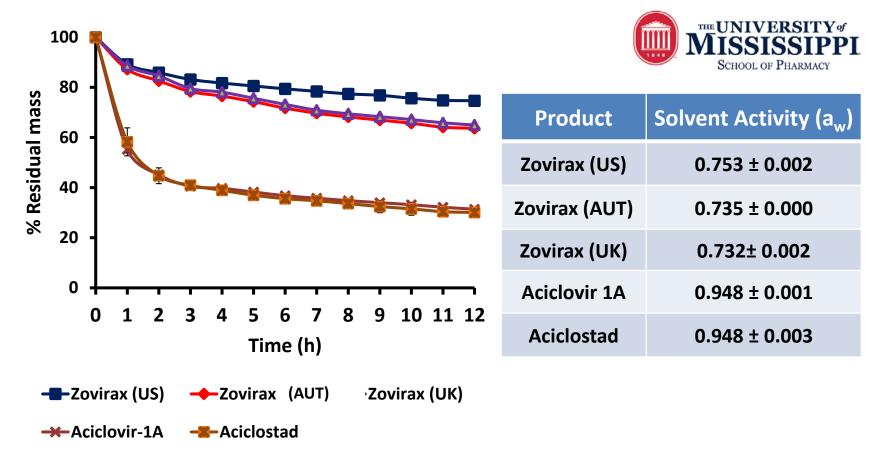
- Joanneum Research (Austria) dermal Open Flow Microperfusion (dOFM)
 - University of Maryland/Bath (USA/UK) Tape Stripping

Q3 Tests

O3 Tests

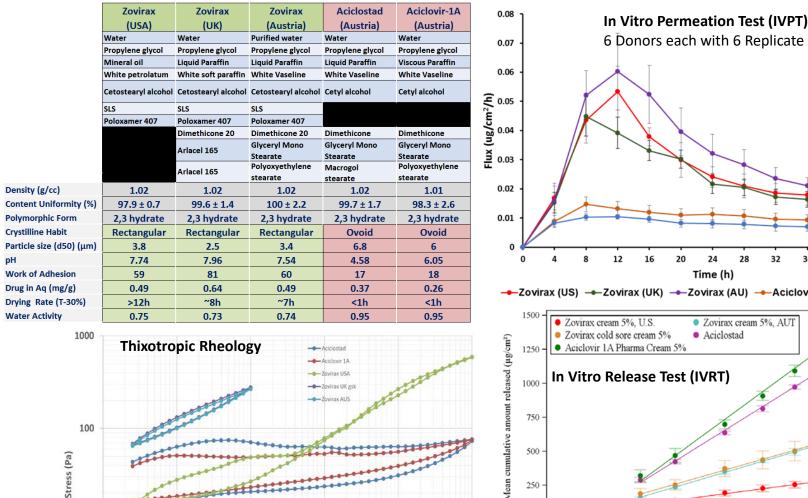
Q3 Tests

Coordinated Research Strategy



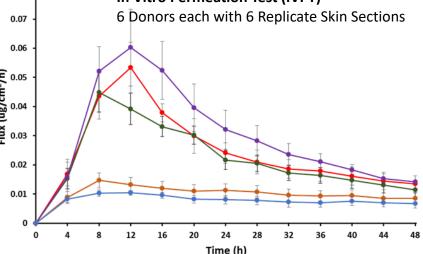
- Pharmaceutically Equivalent Acyclovir 5% Creams
 - Positive and Negative Controls for BE

Zovirax	Zovirax	Zovirax	Aciclostad	Aciclovir-1A
(USA)	(UK)	(Austria)	(Austria)	(Austria)
Water	Water	Purified water	Water	Water
Propylene glycol	Propylene glycol	Propylene glycol	Propylene glycol	Propylene glycol
Mineral oil	Liquid Paraffin	Liquid Paraffin	Liquid Paraffin	Viscous Paraffin
White petrolatum	White soft paraffin	White Vaseline	White Vaseline	White Vaseline
Cetostearyl alcohol	Cetostearyl alcohol	Cetostearyl alcohol	Cetyl alcohol	Cetyl alcohol
SLS	SLS	SLS		
Poloxamer 407	Poloxamer 407	Poloxamer 407		
	Dimethicone 20	Dimethicone 20	Dimethicone	Dimethicone
	Arlacel 165	Glyceryl Mono	Glyceryl Mono	Glyceryl Mono
		Stearate	Stearate	Stearate
	Arlacel 165	Polyoxyethylene	Macrogol	Polyoxyethylene
		stearate	stearate	stearate

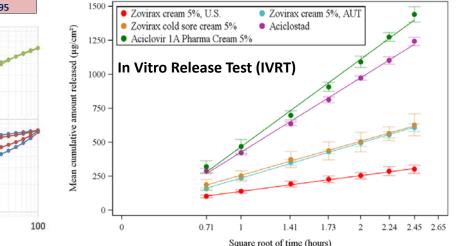

Dosage Form Metamorphosis

• Solvent Activity and Drying Rate Prof. Narasimha Murthy FDA Award U01-FD005223

Product Quality and Performance



10 0.001


0.01

0.1

Shear rate 1/s

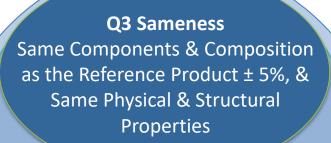
--Zovirax (US) --Zovirax (UK) --Zovirax (AU) --Aciclovir-1A --Aciclostad

www.fda.gov Data provided courtesy of Prof. Narasimha Murthy (University of Mississippi) FDA Award U01-FD005223 and Dr. Frank Sinner (Joanneum Research FDA Award U01-FD004946

10

FDA Product Quality and Performance 1.2 Quality Generic Cream **Generic Gel Generic Gel** Metrocream[®] Metrogel® Attribute (Fougera) (Tolmar) (Taro) Tolmar gel Metronidazole Flux (μg/cm²/h) 4.8 5.1 5.2 5.0 5.4 pН Taro gel Density (g/cc) 1.02 1.02 1.01 1.02 1.02 RLD gel 0.8 Fougera cream WOA (g.sec) 57.6 63.9 39.4 43.9 42.0 Particle size RLD cream Active ingredient is completely dissolved (μm) Drug in Aq 4.20 2.92 -------(mg/g) 0.4 Drug in Oil 2.58 3.94 -------(mg/g) Solvent Activity 0.977 0.974 0.992 0.994 1.002 Globule size. 2.8 2.2 ---------d₅₀ (µm) 16 24 32 0 8 40 Drying, T₃₀(min) 17 11.4 5.5 4.7 6.5 Time (h) 10⁴ 100 Fougera Cream Yield Stress = 94 Pa Metrocream Yield Stress = 70 Pa ---- Tolmar Gel 80 % Product remaining 10³ Dose 10 mg/cm² Yield Stress = 50 Pa -----Vield Str = 50 PaPrasco Gel 60 G' (Pa) 40 10² Metrocream Galderma Metronidazole Cream Fougera Metrolotion Galderma 20 Metronidazole Gel Tolmar Prasco Gel Taro Gel 10^{1} 0 0.1 1 10 100 0 50 100 150 200 Stress (Pa) Time (min)

www.fda.gov Data provided courtesy of Prof. Narasimha Murthy (University of Mississippi) FDA Award U01-FD005223


FDA **IVPT** Results for Different Products 1.2 0.08 Acyclovir **Metronidazole** Tolmar gel 0.07 Metronidazole Flux (μg/cm²/h) . . . Taro gel 0.06 RLD gel Flux (ug/cm²/h) 600 000 800 000 Fougera cream RLD cream 0.02 0.01 0 0 12 28 32 8 16 20 24 48 0 16 24 32 8 40 Time (h) Time (h) -Zovirax (US) -Zovirax (UK) -Zovirax (AU) -Aciclovir-1A -Aciclostad 4.5 4.5 **RLD** cream **RLD** cream Lidocaine Prilocaine Generic cream Generic cream Average Flux (µg/cm²/h) :5 с Average Flux (µg/cm²/h) T G Gel Gel 0 0 12 16 20 24 12 16 4 8 0 4 8 20 24 Time (h) Time (h)

www.fda.gov Data provided courtesy of Prof. Narasimha Murthy (University of Mississippi) FDA Award U01-FD005223

Q3 Sameness for Topical Products

• An evolving concept for topical dermatological products

Q2 Sameness Same Components & Composition as the Reference Product ± 5%

Q1 Sameness

Same Components as the Reference Product Q3 Similarity Similar Components & Composition to the Reference Product, & Similar Physical & Structural Properties

No Difference

in inactive ingredients or other aspects of the formulation relative to the reference product

that may significantly affect local or systemic bioavailability

(e.g., Q1/Q2 sameness, but not necessarily)

Acknowledgements

FDA

OGD (ORS)

- Markham Luke, MD, PhD
- Priyanka Ghosh, PhD
- Tannaz Ramezanli, PhD
- Bryan Newman, PhD
- Kaushalkumar Dave, PhD
- Yi Zhang, PhD
- Kimberly Witzmann, MD
- Robert Lionberger, PhD

Research Collaborators

Funding for six projects was made possible, in part, by the FDA through:

GDUFA Award U01FD004946/5861

- Frank Sinner, PhD
- GDUFA Awards U01FD004947/4955
- Audra Stinchcomb, PhD GDUFA Award U01FD00**5223**
- Narasimha Murthy, PhD

GDUFA Award U01FD005226

Michael Roberts, PhD

GDUFA Award U01FD004942

Kevin Li, PhD

OGD (Other Offices)

- Suman Dandamudi, PhD
- Ravi Juluru, PhD
- Ethan Stier, PhD
- Bing Li, PhD
- Nilufer Tampal, PhD
- Utpal Munshi, PhD
- Dale Conner, PharmD
- Andrew LeBoeuf, JD

<u>CDER</u>

- Pahala Simamora, PhD (OPQ)
- Richard Chang, PhD (OPQ)
- Bing Cai, PhD (OPQ)
- Andre Raw, PhD (OPQ)
- Katherine Tyner, PhD (OPQ)
- Elena Rantou, PhD (OTS)
- Stella Grosser, PhD (OTS)
- Jill Brown, BSN (OTS)
- E. Dennis Bashaw, PharmD (OCP)

