

A GENERIC PERSPECTIVE ON THE USE OF IN VITRO ASSESSMENT METHODS

Bridging Results from Maximum Use Trials with Sunscreen Reformulations

Topical Drug Development Evolution of Science and Regulatory Policy

July 30th, 2019 University of Maryland School of Pharmacy, Baltimore, MD

Sam Raney, Ph.D.

Lead for Topical and Transdermal Drug Products U.S. Food and Drug Administration, Office of Generic Drugs Office of Research and Standards, Division of Therapeutic Performance

Disclaimer

 This presentation reflects the views of the author and should not be construed to represent FDA's views or policies.

Patient Access to Topical Products

- The vast majority (approximately 80%) of topical dermatological drug products have fewer than three generic competitors, and in many cases, have no approved generics at all.
- This may have been attributable to the historical barriers to the development of topical dermatological drug products, possibly including
 - Comparative clinical endpoint bioequivalence (BE) studies
 - The complex nature of topical formulations

Developing Rational BE Standards

- A <u>Modular</u> Framework for In Vitro BE Evaluation
 - Q1/Q2 sameness of inactive ingredient components and quantitative composition
 - Q3 (Physical & Structural Characterization) as relevant to the nature of the product
 - **IVRT** (In Vitro Release Test) for moderately complex products
 - **IVPT** (In Vitro Permeation Test) or another bio-relevant assay for more complex drug products
- A <u>Scalable</u> Framework for BE Evaluation
 - In Vivo pharmacokinetic (PK) studies may be appropriate
 - In Silico computational modeling may be useful

Developing In Vitro BE Standards

- **Q1/Q2 Sameness** (components and composition of excipients) Mitigates the risk of <u>known failure modes</u> related to:
 - Irritation and sensitization
 - Formulation interaction with diseased skin
 - Stability, solubility, etc. of the drug
 - Vehicle contribution to efficacy

Formulations Can Alter Bioavailability

- It is widely understood that the formulation of a topical semisolid dosage form matters greatly
- It is now increasingly clear how excipients exert their influence, by modulating the physicochemical and microstructural arrangement of matter in the dosage form
- The resulting physical and structural characteristics of topical dosage forms, and their metamorphic properties on the skin, can directly influence topical bioavailability

• Q3 (Physical and Structural) Similarity

An evolving regulatory concept:

Q3 Similarity

Same Components & Composition as the RLD Product ± 5%, and Similar Physical & Structural Properties

Q2 Sameness

Same Components & Composition as the RLD Product ± 5%

Q1 Sameness

Same Components as the RLD Product

Effects of Q1/Q2/Q3 on Bioavailability

- Q1, Q2 or Q3 differences can affect:
 - The phase states and the arrangement of matter
 - Drug diffusion within the dosage form
 - Drug partitioning into the stratum corneum (SC)
 - Alteration of skin structure and chemistry
 - Drug diffusion within the skin itself
 - Drug delivery & bioavailability at the target site
 - Skin (de)hydration, irritation or damage
 - Metamorphosis of the dosage form on the skin
 - Thermodynamic activity profile of the drug
 - Thermodynamic effects and heat effects are areas of active research for topical semisolid products and transdermal delivery systems

Developing In Vitro BE Standards

• Q3 (Physical and Structural) Similarity

Mitigates the risk of <u>potential failure modes</u> related to:

- Differences in Q1/Q2 sameness (± 5% tolerances)
- Differences in pH that may sting or irritate diseased skin
- Differences in the polymorphic form of the drug
- Differences in rheology that alter the spreadability, retention, surface area of contact with the diseased skin
- Differences in entrapped air and drug amount per dose
- Differences in phase states and diffusion, partitioning, etc.
- Differences in metamorphosis and drying rates

Dosage Form Metamorphosis

• Solvent Activity of Q1/Q2 Identical Creams

www.fda.gov Data provided courtesy of Prof. Narasimha Murthy (University of Mississippi) FDA Award U01-FD005223

Dosage Form Metamorphosis

- Solvent Activity $(a_s) = \rho/\rho_0$
 - ρ = partial vapor pressure of Solvents in the product
 - ρ_0 = vapor pressure of pure Solvent system

FD/

Developing In Vitro BE Standards

• IVPT (In Vitro Permeation Test): Cutaneous PK Study

Mitigates the risk of <u>other unknown failure modes</u> related to:

- Differences in Q1 and/or Q2
- Differences in physical and structural similarity
- Differences that may not be identified by other tests
- IVPT is a sensitive, discriminating indicator of relative BA
- IVPT results can exhibit in vitro in vivo correlation (IVIVC)
- IVPT studies can compare the relative bioavailability of sunscreen actives (or other components of interest) between a test and reference formulation

IVPT Study Design

IVPT: In Vitro In Vivo Correlation

• Lehman et al., 2011 (92 IVIVC Data Sets)

Fig. 1. IVIV ratios of total absorption for all 92 data sets plotted on log-log scale. The IVIV ratios ranged from 0.18 to 19.7, with an overall mean of 1.6. Solid line: ideal 1:1 correlation. Dashed lines: \pm 3-fold difference from ideal.

D

IVPT: In Vitro In Vivo Correlation

• Lehman et al., 2011 (92 IVIVC Data Sets)

Fig. 2. IVIV ratios of total absorption for 11 fully harmonized data sets plotted on log-log scale. The IVIV ratios ranged from 0.58 to 1.28, with an overall mean of 0.96. Line: ideal 1:1 correlation.

HD)

IVPT: In Vitro In Vivo Correlation

• Shaw et al., 1975

"... in vitro accurately predicted the situation which pertains in vivo."

FDA

• Venkateshwaran S, 1997

FDA

Nicotine TDS^{*} Heat Effects Studies

Nicotine TDDS 14 mg/24h	Patch size (cm ²)	Rate/Area (µg/h/cm²)	Adhesive type	Othei	r inactive ingredients
Nicoderm CQ®	15.75	37	Polyisobutylene	Ethylene polyethyl and cl	vinyl acetate-copolymer, ene between pigmented ear polyester backing
Aveva	20	29	Polyacrylate/Silicone	P	Polyester backing
	20 15 10 00 -1		⁹ Time (h) ¹⁴ ¹⁹	24	
Nicotine - Early Heat Heat ($42 \pm 2^{\circ}$ C) from 4 to 5h TDS On					
Time (h) 4			9	12	
N	Nicotine - Late Heat Heat $(42 \pm 2^{\circ}C)$			from 8	to 9h
TDS On				_	
Time (h) 8			8 9	12	

Data provided courtesy of Prof. Audra Stinchcomb (University of Maryland) FDA Award U01-FD004955

Level A IVIVC/IVIVR for Nicotine TDS

19

• Approach I (prediction based upon in vitro data only)

Approach II (including an in vivo-derived heat factor)

Refer to Shin et al. (2018) In vitro-in vivo correlations for nicotine transdermal delivery systems evaluated by both in vitro skin permeation (IVPT) and in vivo serum pharmacokinetics under the influence of transient heat application. J Control Release. 270: 76-88. (Funded, in part, through **FDA award U01FD004955** (Dr. Audra Stinchcomb; University of Maryland, Baltimore) and **FDA award U01FD004942** (Dr. Kevin Li; University of Cincinnati))

Level A IVIVC/IVIVR for Nicotine TDS

FDA

20

Refer to Shin et al. (2018) In vitro-in vivo correlations for nicotine transdermal delivery systems evaluated by both in vitro skin permeation (IVPT) and in vivo serum pharmacokinetics under the influence of transient heat application. J Control Release. 270: 76-88. (Funded, in part, through **FDA award U01FD004955** (Dr. Audra Stinchcomb; University of Maryland, Baltimore) and **FDA award U01FD004942** (Dr. Kevin Li; University of Cincinnati))

21

Comprehensive Research Strategy

Q3 Product Quality Characterization

- FDA FDA/CDER/OTS/DPQR (USA)
- MISSISSIPPI University of Mississippi (USA) University of
 - University of South Australia (and Germany)
 - In Vitro Release Test (IVRT)

FDA • FDA/CDER/OTS/DPQR (USA) **IVRT**

JOANNEUM RESEARCH Joanneum Research (Austria) IVRT

Cutaneous PK: In Vitro Permeation Test (IVPT)

- MISSISSIPPI University of Mississippi (USA) **IVPT**
 - University of Maryland (USA) UNIVERSITY #MARYLAND IVPT
 - University of South Australia IVPT

Cutaneous PK: In Vivo Methods

- Joanneum Research (Austria) dermal Open Flow Microperfusion (dOFM)
- University of Maryland/Bath (USA/UK) Tape Stripping UNIVERSITY

Q3 Tests

O3 Tests

Q3 Tests

Coordinated Research Strategy

- Pharmaceutically Equivalent Acyclovir 5% Creams
 - Positive and Negative Controls for BE

Zovirax	Zovirax	Zovirax	Aciclostad	Aciclovir-1A
(USA)	(UK)	(Austria)	(Austria)	(Austria)
Water	Water	Purified water	Water	Water
Propylene glycol	Propylene glycol	Propylene glycol	Propylene glycol	Propylene glycol
Mineral oil	Liquid Paraffin	Liquid Paraffin	Liquid Paraffin	Viscous Paraffin
White petrolatum	White soft paraffin	White Vaseline	White Vaseline	White Vaseline
Cetostearyl alcohol	Cetostearyl alcohol	Cetostearyl alcohol	Cetyl alcohol	Cetyl alcohol
SLS	SLS	SLS		
Poloxamer 407	Poloxamer 407	Poloxamer 407		
	Dimethicone 20	Dimethicone 20	Dimethicone	Dimethicone
	Arlacal 165	Glyceryl Mono	Glyceryl Mono	Glyceryl Mono
		Stearate	Stearate	Stearate
	Arlacel 165	Polyoxyethylene	Macrogol	Polyoxyethylene
		stearate	stearate	stearate

Dosage Form Metamorphosis

• Solvent Activity and Drying Rate Prof. Narasimha Murthy FDA Award U01-FD005223

Product Quality and Performance

10 0.001

0.01

0.1

Shear rate 1/s

--Zovirax (US) --Zovirax (UK) --Zovirax (AU) --Aciclovir-1A --Aciclostad

www.fda.gov Data provided courtesy of Prof. Narasimha Murthy (University of Mississippi) FDA Award U01-FD005223 and Dr. Frank Sinner (Joanneum Research FDA Award U01-FD004946

10

FDA Product Quality and Performance 1.2 Quality Generic Cream **Generic Gel Generic Gel** Metrocream[®] Metrogel® Attribute (Fougera) (Tolmar) (Taro) Tolmar gel Metronidazole Flux (μg/cm²/h) 4.8 5.1 5.2 5.0 5.4 pН Taro gel Density (g/cc) 1.02 1.02 1.01 1.02 1.02 RLD gel 0.8 Fougera cream WOA (g.sec) 57.6 63.9 39.4 43.9 42.0 Particle size RLD cream Active ingredient is completely dissolved (μm) Drug in Aq 4.20 2.92 -------(mg/g) 0.4 Drug in Oil 2.58 3.94 -------(mg/g) Solvent Activity 0.977 0.974 0.992 0.994 1.002 Globule size. 2.8 2.2 ---------d₅₀ (µm) 16 24 32 0 8 40 Drying, T₃₀(min) 17 11.4 5.5 4.7 6.5 Time (h) 10⁴ 100 Fougera Cream Yield Stress = 94 Pa Metrocream Yield Stress = 70 Pa ---- Tolmar Gel 80 % Product remaining 10³ Dose 10 mg/cm² Yield Stress = 50 Pa -----Vield Str = 50 PaPrasco Gel 60 G' (Pa) 40 10² Metrocream Galderma Metronidazole Cream Fougera Metrolotion Galderma 20 Metronidazole Gel Tolmar Prasco Gel Taro Gel 10^{1} 0 0.1 1 10 100 0 50 100 150 200 Stress (Pa) Time (min)

www.fda.gov Data provided courtesy of Prof. Narasimha Murthy (University of Mississippi) FDA Award U01-FD005223

Data provided courtesy of Prof. Narasimha Murthy (University of Mississippi) FDA Award U01-FD005223

IVPT Results: Acyclovir Cream, 5%

• Cutaneous Pharmacokinetics by IVPT

Negative Controls for Bioequivalence

	University of Mississippi	University of Maryland	University of South Australia
Dose		15 mg/cm ²	
Desing technique	Dispensed-Spatula	Dispensed and dispersed- Positive	Dispensed- Pipette
Dosing technique	Dispersed-glass rod	displacement pipette	Dispersed- Syringe plunger
Skin type	Torso	Abdomen	Abdomen
Thickness	Dermatomed	Dermatomed	Heat separated epidermis
Instrument	Franz diffusion cell (2 cm ²)	In-Line Flow through cell (0.95 cm ²)	Franz diffusion cell (1.3 cm ²)
Skin Integrity	Electrical Resistance	Trans Epidermal Water Loss	Electrical resistance

Data provided courtesy of

Prof. Narasimha Murthy (University of Mississippi) **FDA Award U01-FD005223**, Prof. Audra Stinchcomb (University of Maryland) **FDA Award U01-FD004947**, and Prof. Michael Roberts (University of South Australia) **FDA Award U01-FD005226**

Influence of Quality on Performance

• Influence of Dose **Application** on Bioavailability

Influence of Quality on Performance

• Influence of Dose **Dispensing** on Bioavailability

Data provided courtesy of

Prof. Narasimha Murthy (University of Mississippi) **FDA Award U01-FD005223**, Prof. Audra Stinchcomb (University of Maryland) **FDA Award U01-FD004947**, and Prof. Michael Roberts (University of South Australia) **FDA Award U01-FD005226**

www.fda.gov

Influence of Dispensing Stress on Q3

• Influence of Dose Dispensing on Product Quality Prof. Michael Roberts FDA Award U01-FD005226

www.fda.gov Data provided courtesy of Prof. Michael Roberts (University of South Australia) FDA Award U01-FD005226

FDA Influence of Dispensing Stress on Q3

 Influence of Dose Dispensing on Product Quality Prof. Michael Roberts FDA Award U01-FD005226

pump

Comparison Zovirax UK pump and tube

side view

tube

IVPT Statistical Analysis

Negative Controls for BE: Aciclovir-1A[®] vs. Zovirax[®] US

Aciclovir-1A® (T) vs. Zovirax® US (R)

IVPT	Maximum Flux	Total Bioavailability	
PK Endpoint	(Jmax)	(AUC)	
Point Estimate	0.172	0.104	
S Within Reference	0.521	0.551	
	4.433	7.236	
SABE [0.80, 1.25]	(Non-BE)	(Non-BE)	
N for [0.80, 1.25] with 3 Replicates	6	8	

Aciclovir-1A[®] (T) vs. Zovirax[®] US (R)

IVPT	Maximum Flux	Total Bioavailability
PK Endpoint	(Jmax)	(AUC)
Point Estimate	0.290	0.366
S Within Reference	0.575	0.419
	2.383	1.884
SABE [0.80, 1.25]	(Non-BE)	(Non-BE)
N for [0.80, 1.25] with 6 Replicates	8	20

Data provided courtesy of

Prof. Narasimha Murthy (University of Mississippi) **FDA Award U01-FD005223**, and *Prof. Michael Roberts (University of South Australia)* **FDA Award U01-FD005226**

IVPT Statistical Analysis

Positive Controls for BE: Aciclovir-1A[®] and Zovirax[®] US

Comparison to Self by dividing up 6 replicates

Aciclovir-1A[®] (T) vs. Aciclovir-1A[®] (R)

IVPT	Maximum Flux	Total Bioavailability
PK Endpoint	(Jmax)	(AUC)
Point Estimate	0.983	0.958
S Within Reference	0.303	0.318
	-0.026	-0.041
SABE [0.80, 1.25]	(<mark>BE</mark>)	(<mark>BE</mark>)
N for [0.80, 1.25] with 4 Replicates	26+	15
N for [0.80, 1.25] with 3 Replicates	26+	15

Zovirax[®] US (T) vs. Zovirax[®] US (R)

IVPT	Maximum Flux	Total Bioavailability
PK Endpoint	(Jmax)	(AUC)
Point Estimate	0.962	1.101
S Within Reference	0.697	0.469
	-0.214	-0.020
SABE [0.80, 1.25]	(<mark>BE</mark>)	(<mark>BE</mark>)
N for [0.80, 1.25] with 4 Replicates	12+	14
N for [0.80, 1.25] with 3 Replicates	14	15+

Acknowledgements

FDA

OGD (ORS)

- Markham Luke, MD, PhD
- Priyanka Ghosh, PhD
- Tannaz Ramezanli, PhD
- Bryan Newman, PhD
- Kaushalkumar Dave, PhD
- Yi Zhang, PhD
- Kimberly Witzmann, MD
- Robert Lionberger, PhD

Research Collaborators

Funding for six projects was made possible, in part, by the FDA through:

GDUFA Award U01FD004946/5861

- Frank Sinner, PhD
- GDUFA Awards U01FD004947/4955
- Audra Stinchcomb, PhD GDUFA Award U01FD00**5223**
- Narasimha Murthy, PhD

GDUFA Award U01FD005226

Michael Roberts, PhD

GDUFA Award U01FD004942

Kevin Li, PhD

OGD (Other Offices)

- Suman Dandamudi, PhD
- Ravi Juluru, PhD
- Ethan Stier, PhD
- Bing Li, PhD
- Nilufer Tampal, PhD
- Utpal Munshi, PhD
- Dale Conner, PharmD
- Andrew LeBoeuf, JD

<u>CDER</u>

- Pahala Simamora, PhD (OPQ)
- Richard Chang, PhD (OPQ)
- Bing Cai, PhD (OPQ)
- Andre Raw, PhD (OPQ)
- Katherine Tyner, PhD (OPQ)
- Elena Rantou, PhD (OTS)
- Stella Grosser, PhD (OTS)
- Jill Brown, BSN (OTS)
- E. Dennis Bashaw, PharmD (OCP)

