

CUTANEOUS PHARMACOKINETICS AND PHARMACODYNAMICS FOR THE 21ST CENTURY

7th AGAH Dermatology Product Development Workshop May 12th, 2017

Sam Raney, Ph.D.

Scientific Lead for Topical and Transdermal Drug Products Division of Therapeutic Performance, Office of Research and Standards Office of Generic Drugs, U.S. Food and Drug Administration

Disclaimer

 The views expressed in this presentation do not reflect the official policies of the FDA, or the Department of Health and Human Services; nor does any mention of trade names, commercial practices, or organization imply endorsement by the United States Government.

Establishing Bioequivalence

• Foundations of Bioequivalence in the 20th Century

- Hatch-Waxman generic drug legislation enacted in 1984
- Regulatory concepts of bioequivalence and Q1/Q2 sameness
 - Qualitative (Q1) Sameness of formulations
 - Q1 = the same inactive ingredients
 - Quantitative (Q2) Sameness of formulations
 - Q2 = the same amount (± 5%) of each of the same inactive ingredients
- Acceptable types of bioequivalence evidence established (please see 21 CFR 320.24 for precise descriptions)
 - Pharmacokinetic bioequivalence approaches considered to be among the most accurate, sensitive, and reproducible types of evidence with which to demonstrate bioequivalence
 - Pharmacodynamic bioequivalence approaches considered to be relatively less accurate, sensitive, and reproducible

Advancing Bioequivalence

• Foundations of Bioequivalence in the 21st Century

- Generic Drug User Fee Amendments (GDUFA) of 2012
- Office of Generic Drugs regulatory science research infrastructure developed
- Simultaneous scientific advances in:
 - Cutaneous pharmacokinetic methods
 - Semisolid drug product characterization
 - Concept of Q3 similarity (the same amount (± 5%) of each of the same inactive ingredients, with the same arrangement of matter)
- Exploration of local/regional pharmacokinetics and physiologically-based pharmacokinetic (PBPK) models
- Exploration of in vitro bioequivalence approaches and the concept of "Bioequivalence-by-Design"

U.S. FDA Office of Generic Drugs

- <u>Mission</u> of the Office of Generic Drugs is to make **high quality**, **affordable** medicines **available** to the public.
- **<u>GDUFA</u>** Regulatory Research Priorities include:
 - Equivalence of complex products (e.g. topical products)
 - Equivalence of locally-acting products (e.g. topical products)
- **<u>Vision</u>** to support our commitments:
 - Product Quality Characterization (high quality medicines)
 - Efficient Bioequivalence(BE) Standards (make medicines available)

High Quality Drug Products

• What does "quality" mean for a drug product?

Fitness for Purpose

"The totality of **features and characteristics of a product...** that bear on its ability to satisfy stated or implied needs" - International Organization for Standardization (ISO)

Control of Failure Modes

"Good pharmaceutical quality represents **an acceptably low risk of failing** to achieve the desired clinical attributes."

- Dr. Janet Woodcock, Director, FDA CDER Woodcock, J. (2004) The concept of pharmaceutical quality. Am Pharm Review 7(6):10-15

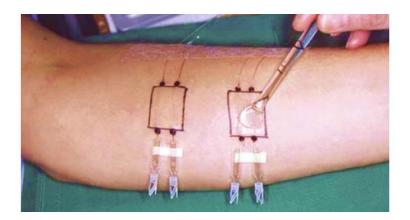
Available (and Affordable) Products

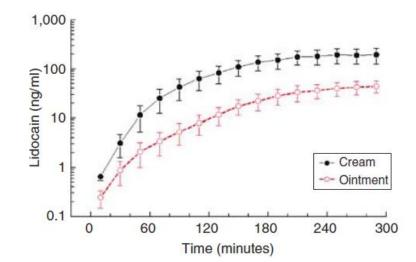
• Power of "efficient" bioequivalence standards

Overall Drug Products 1

89% of prescriptions dispensed in 2015 were for generics

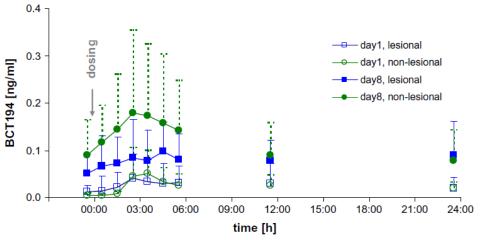
• <u>Efficient</u> Pharmacokinetics (PK)-based methods are available


Topical Drug Products²


Relatively fewer topical products have generics

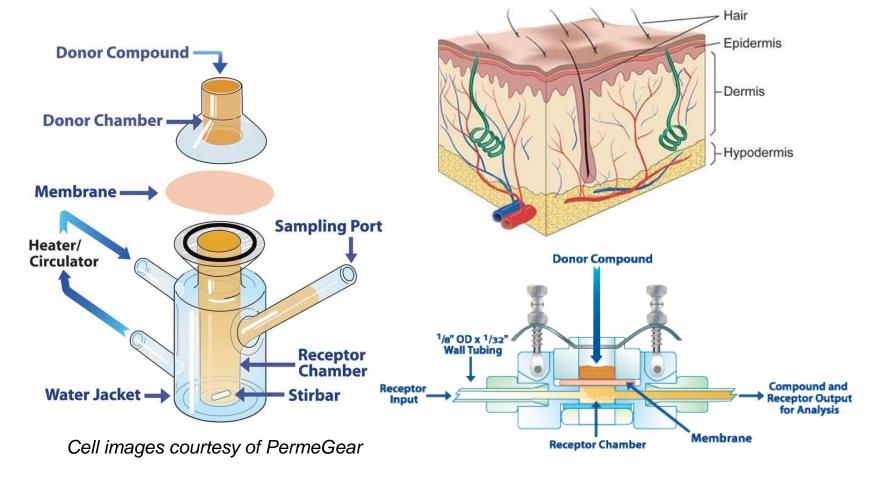
- Efficient In Vitro Bioequivalence methods may be useful
 - Particularly for generic products that are compositionally, physically and structurally similar to a Reference Listed Drug (RLD) product
- Efficient Pharmacokinetics (PK)-based methods may be useful
 - Particularly for generic products that may not be compositionally, physically and structurally similar to a RLD product

In Vivo Cutaneous Pharmacokinetics



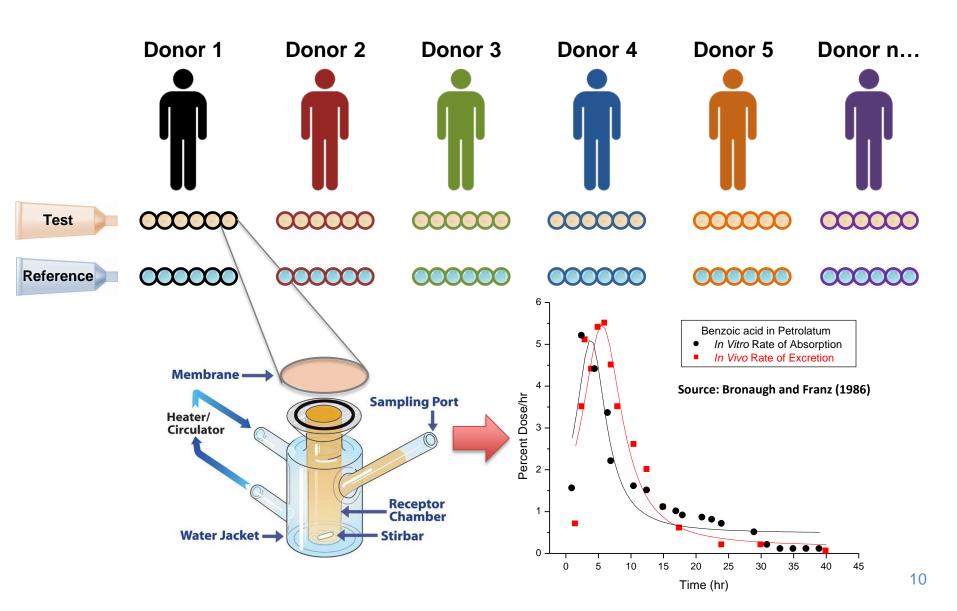
Source: Benfeldt et al. (2007) Bioequivalence of Topical Formulations in Humans: Evaluation by Dermal Microdialysis Sampling and the Dermatopharmacokinetic Method. Journal of Investigative Dermatology (2007) 127, 170–178. doi:10.1038/sj.jid.5700495

Pharmacokinetics of BCT194 sampled in the dermis by OFM

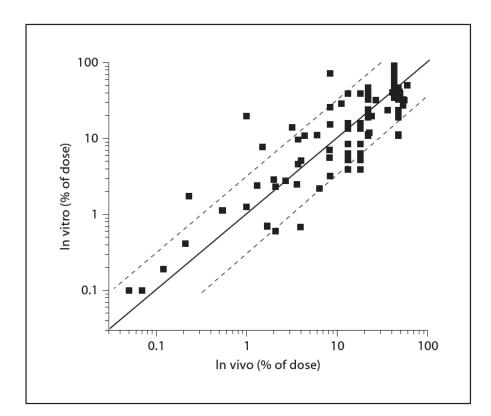


Source: Bodenlenz et al. (2012) Dermal PK/PD of a lipophilic topical drug in psoriatic patients by continuous intradermal membrane-free sampling. European Journal of Pharmaceutics and Biopharmaceutics 81 (2012) 635–641. doi:10.1016/j.ejpb.2012.04.009

In Vitro Cutaneous Pharmacokinetics



• IVPT (In Vitro Permeation Test)


IVPT Study Design

IVPT: In Vitro In Vivo Correlation

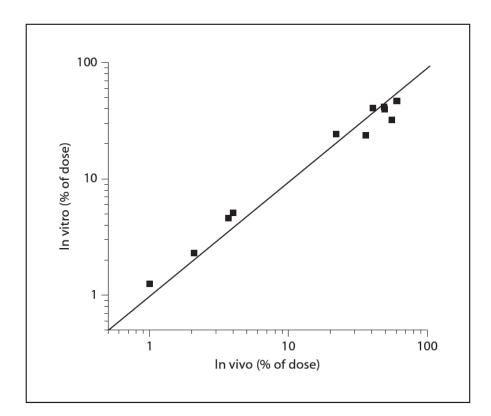

• Lehman et al., 2011 (92 IVIVC Data Sets)

Fig. 1. IVIV ratios of total absorption for all 92 data sets plotted on log-log scale. The IVIV ratios ranged from 0.18 to 19.7, with an overall mean of 1.6. Solid line: ideal 1:1 correlation. Dashed lines: \pm 3-fold difference from ideal.

IVPT: In Vitro In Vivo Correlation

• Lehman et al., 2011 (92 IVIVC Data Sets)

Fig. 2. IVIV ratios of total absorption for 11 fully harmonized data sets plotted on log-log scale. The IVIV ratios ranged from 0.58 to 1.28, with an overall mean of 0.96. Line: ideal 1:1 correlation.

Developing In Vitro BE Standards

- A Rational Framework for In Vitro Topical BE
 - Q1/Q2 sameness (of inactive ingredient composition)
 - Q3 tests included as relevant to the nature of the product
 - **IVRT** (In Vitro Release Test) also included for moderately complex products
 - **IVPT** (In Vitro Permeation Test) or another bio-relevant assay included for the more complex drug products
- May be appropriate for certain topical products

- **Q1/Q2 Sameness** (of inactive ingredient composition) Can mitigate the risk of <u>known failure modes</u> related to:
 - Irritation and sensitization
 - Formulation interaction with diseased skin
 - Drug stability, solubility, etc.
 - Vehicle (placebo) contribution to efficacy

- **Q3 Similarity** (physical, chemical & structural similarity) Can mitigate the risk of <u>potential failure modes</u> related to:
 - Slight differences among Q1/Q2 formulations
 - Differences in pH that may sting or irritate (broken) skin
 - Differences in the polymorphic form of the drug
 - Differences in rheology that may alter the spreadability, retention, surface area of contact with the diseased skin
 - Differences in entrapped air and drug amount per dose
 - Differences in phase states and diffusion, partitioning, etc.
 - Differences in metamorphosis and drying rates

• IVRT (In Vitro Release Test)

Can mitigate the risk of <u>unknown failure modes</u> related to:

- Differences in Q1/Q2 sameness (± 5% tolerances)
- Differences in Q3 similarity
- Differences that may not be identified by Q3
- IVRT is a compendial method with established statistical analyses which can be sensitive and discriminating (but no IVIVC is expected)

• IVPT (In Vitro Permeation Test)

Can mitigate the risk of <u>unknown failure modes</u> related to:

- Differences in Q1/Q2 sameness (± 5% tolerances)
- Differences in Q3 similarity
- Differences that may not be identified by IVRT or Q3 tests
- IVPT can be a sensitive, discriminating indicator of relative bioavailability, and it can exhibit IVIVC

Statistical Analysis of Topical BE

• Statistical Analysis of BE based upon PK endpoints

- The approach for Scaled Average Bio-Equivalence (SABE) analysis of highly variable drugs may be adapted for the replicate design of the study comparing the topical products
- A mixed criterion, accompanied by a point estimate constraint, may use the within-reference variability (σ_{WR}) as a cutoff point for BE analysis:
 - When $\sigma_{WR} \leq 0.294$, Average Bio-Equivalence (ABE) may be used
 - When $\sigma_{WR} > 0.294$, Scaled ABE (SABE) may be used
- Potentially applicable to cutaneous PK endpoints
 - In vitro (J_{max} and AUC) for IVPT studies
 - In vivo (C_{max} and AUC) for dermal microdialysis/microperfusion studies

Research on Acyclovir Cream, 5%

• Positive and Negative Controls for Bioequivalence

Zovirax	Zovirax	Zovirax	Aciclostad	Aciclovir-1A
(USA)	(UK)	(Austria)	(Austria)	(Austria)
Water	Water	Purified water	Water	Water
Propylene glycol	Propylene glycol	Propylene glycol	Propylene glycol	Propylene glycol
Mineral oil	Liquid Paraffin	Liquid Paraffin	Liquid Paraffin	Viscous Paraffin
White petrolatum	White soft paraffin	White Vaseline	White Vaseline	White Vaseline
Cetostearyl alcohol	Cetostearyl alcohol	Cetostearyl alcohol	Cetyl alcohol	Cetyl alcohol
SLS	SLS	SLS		
Poloxamer 407	Poloxamer 407	Poloxamer 407		
	Dimethicone 20	Dimethicone 20	Dimethicone	Dimethicone
	Arlacel 165	Glyceryl Mono	Glyceryl Mono	Glyceryl Mono
		Stearate	Stearate	Stearate
	Arlacel 165	Polyoxyethylene	Macrogol	Polyoxyethylene
		stearate	stearate	stearate

Comprehensive Research Strategy

Q3 Product Quality Characterization

- FDA FDA/CDER/OTS/DPQR (USA)
- MISSISSIPPI University of Mississippi (USA)
 - University of South Australia (and Germany)

In Vitro Release Test (IVRT)

FDA/CDER/OTS/DPQR (USA)IVRTJoanneum Research (Austria)IVRT

Cutaneous PK: In Vitro Permeation Test (IVPT)

- MISSISSIPPI University of Mississippi (USA) IVPT
 - UNIVERSITY University of Maryland (USA) IVPT
 - University of South Australia IVPT

Cutaneous PK: In Vivo Methods

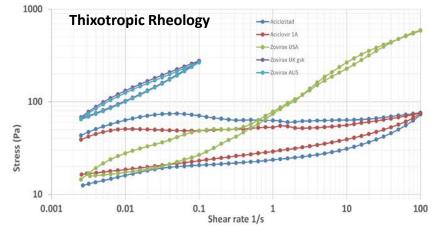
- Joanneum Research (Austria)
 - University University of Maryland (U.K.)

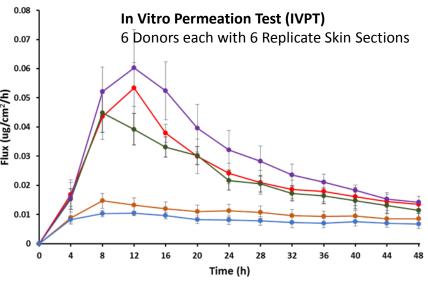
dermal Open Flow Microperfusion (dOFM) Tape Stripping

Q3 Tests

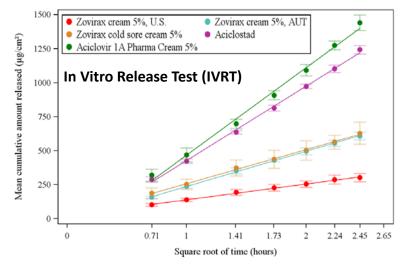
O3 Tests

Q3 Tests


Q3 Characterization



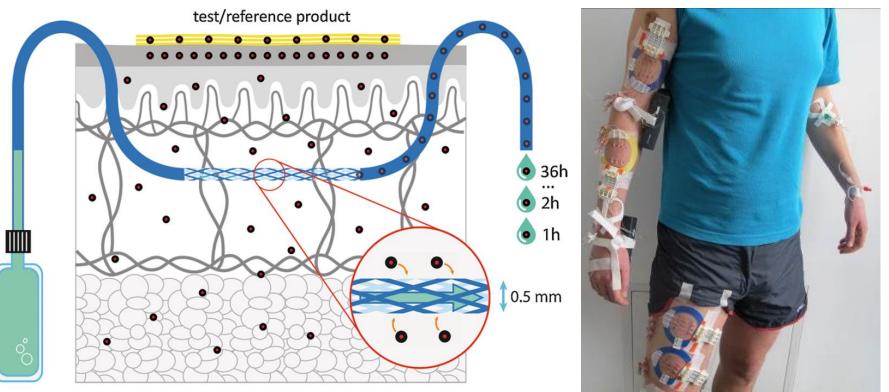
- Characterizing Complexity & Critical Quality Attributes
 - Phase States and the Arrangement of Matter (globules/lamella)
 - Drug Amounts in Dissolved/Undissolved States in Drug Product
 - Drug Amount in Aqueous Phase
 - Drug Particle Size Distribution
 - Drug Polymorphic State
 - Drug Crystalline Habit
 - Texture Analysis
 - Water Activity
 - Drying Rate
 - Rheology
 - Density
 - pH
 - Etc.


Orthogonal In Vitro Testing Approach

	Zovirax	Zovirax	Zovirax	Aciclostad	Aciclovir-1A
	(USA)	(UK)	(Austria)	(Austria)	(Austria)
	Water		Purified water	Water	Water
	Propylene glycol	Propylene glycol	Propylene glycol	Propylene glycol	Propylene glycol
	Mineral oil	Liquid Paraffin	Liquid Paraffin	Liquid Paraffin	Viscous Paraffin
	White petrolatum	White soft paraffin	White Vaseline	White Vaseline	White Vaseline
	Cetostearyl alcohol	Cetostearyl alcohol	Cetostearyl alcohol	Cetyl alcohol	Cetyl alcohol
	SLS				
	Poloxamer 407				
		Dimethicone 20	Dimethicone 20	Dimethicone	Dimethicone
		Arlacel 165	Glyceryl Mono	Glyceryl Mono	Glyceryl Mono
			Stearate Polyoxyethylene	Stearate	Stearate Polyoxyethylene
		Arlacel 165	stearate	Macrogol stearate	stearate
Density (g/cc)	1.02	1.02	1.02	1.02	1.01
Content Uniformity (%)	97.9 ± 0.7	99.6 ± 1.4	100 ± 2.2	99.7 ± 1.7	98.3 ± 2.6
Polymorphic Form	2,3 hydrate	2,3 hydrate	2,3 hydrate	2,3 hydrate	2,3 hydrate
Crystilline Habit	Rectangular	Rectangular	Rectangular	Ovoid	Ovoid
Particle size (d50) (µm)	3.8	2.5	3.4	6.8	6
pН	7.74	7.96	7.54	4.58	6.05
Work of Adhesion	59	81	60	17	18
Drug in Aq (mg/g)	0.49	0.64	0.49	0.37	0.26
Drying Rate (T-30%)	>12h	~8h	~7h	<1h	<1h
Water Activity	0.75	0.73	0.74	0.95	0.95

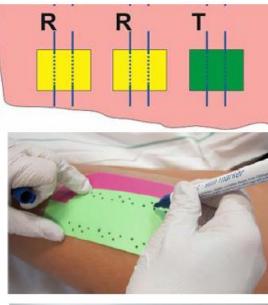
Zovirax (US) — Zovirax (UK) — Zovirax (AU) — Aciclovir-1A — Aciclostad

www.fda.gov

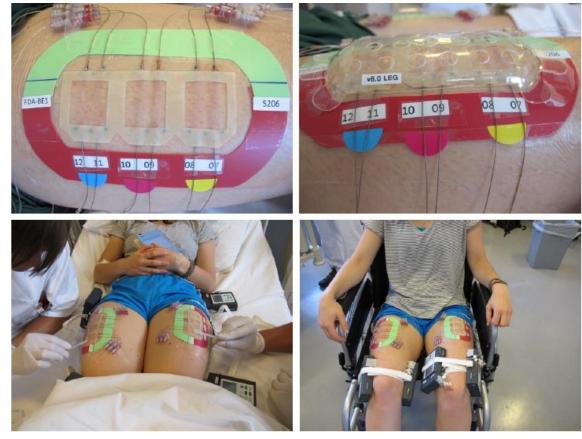

Data provided courtesy of Prof. Narasimha Murthy & Dr. Frank Sinner

FDA

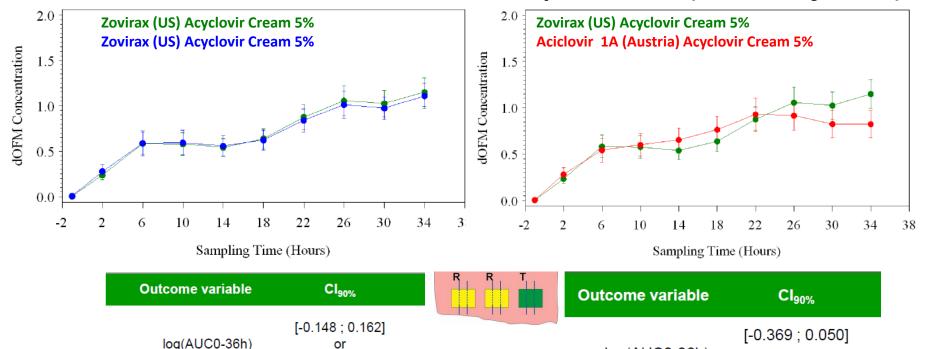
• Dermal Open Flow Microperfusion (dOFM)



Images courtesy of Joanneum Research


In Vivo Cutaneous Pharmacokinetics

• Dermal Open Flow Microperfusion (dOFM)



Images courtesy of Joanneum Research

FDA In Vivo Bioavailability/Bioequivalence

Dermal Pharmacokinetics by dOFM (20 subjects)

or

[86.2 % ; 117.5 %]

[-0.155 ; 0.190]

[85.7 % : 120.9%]

 $log(C_{max})$

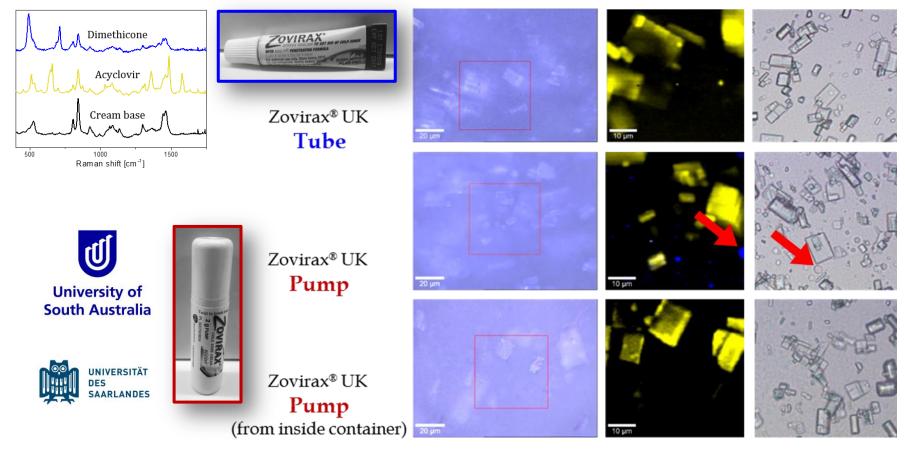
Source: Bodenlenz et al. (2017) Open Flow Microperfusion as a Dermal Pharmacokinetic Approach to Evaluate Topical Bioequivalence. Clinical Pharmacokinetics 2017 Jan;56(1):91-98. www.fda.gov doi: 10.1007/s40262-016-0442-z (FREE Full Text Article)

log(AUC0-36h)

 $log(C_{max})$

or

[69.1 %; 105.2 %]

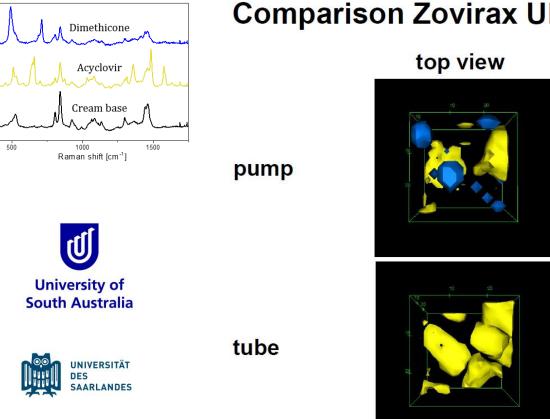

[-0.498 ; 0.022]

or

[60.8 %; 102.2%]

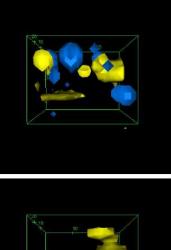
Influence of Dispensing Stress on Q3

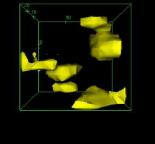
• Influence of Dose Dispensing on Product Quality Prof. Michael Roberts FDA Award U01-FD005226



www.fda.gov

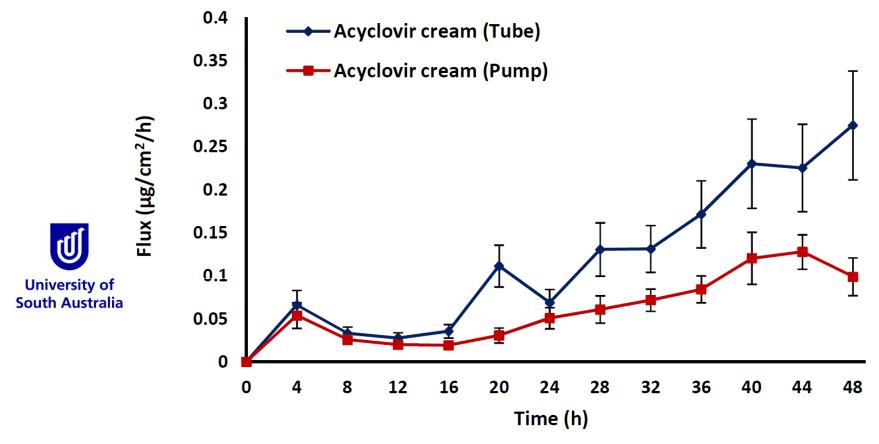
Data provided courtesy of Prof. Michael Roberts & Prof. Maike Windbergs


FDA Influence of Dispensing Stress on Q3


 Influence of Dose Dispensing on Product Quality Prof. Michael Roberts FDA Award U01-FD005226

Comparison Zovirax UK pump and tube

side view



www.fda.gov

Data provided courtesy of Prof. Michael Roberts & Prof. Maike Windbergs

Influence of Dispensing Stress on Q3

• Influence of Dose Dispensing on Product Quality Prof. Michael Roberts FDA Award U01-FD005226

Data provided courtesy of Prof. Michael Roberts

Summary: Acyclovir Cream Research

- Developed several orthogonal Q3 tests
- Characterized the complexity of Acyclovir cream
- Identified potential CQAs for Acyclovir cream
- Correlated Q3 attributes with IVPT (In Vitro BE)
- Correlated Q3 attributes with dOFM (In Vivo BE)
- Corroborated Q3 test results (at multiple labs)
- Corroborated IVPT results (at multiple labs)
- Developed insights that may be applicable to other topical semisolid dosage forms

The Future

- Ongoing research with other dermatological products
 - Different active and inactive ingredients
 - Different dosage forms
 - Different routes of administration
 - Topical
 - Transdermal
- Further exploration of Q3 attributes and patient/caregiver perceptions of product quality
- Further exploration of dermal pharmacokinetics in vivo by independent research groups
 - Continuous dermal Open Flow Microperfusion
 - Continuous and intermittent dermal microdialysis

Acknowledgements

FDA Office of Generic Drugs (ORS)

- Priyanka Ghosh, PhD
- Bryan Newman, PhD
- Yi Zhang, PhD
- Kimberly Witzmann, MD
- Xiaohui (Jeff) Jiang, PhD
- Markham Luke, MD, PhD
- Robert Lionberger, PhD

Research Collaborators

Funding for four projects was made possible, in part, by the FDA through:

GDUFA Award U01FD005223

Narasimha Murthy, PhD

GDUFA Award U01FD005226

• Michael Roberts, PhD

GDUFA Award U01FD004947

- Audra Stinchcomb, PhD GDUFA Award U01FD00**4946**
- Frank Sinner, PhD

FDA Center for Drug Evaluation & Research

- Pahala Simamora, PhD (OPQ)
- Richard Chang, PhD (OPQ)
- Bing Cai, PhD (OPQ)
- Andre Raw, PhD (OPQ)
- Katherine Tyner, PhD (OPQ)
- Elena Rantou, PhD (OTS)
- Stella Grosser, PhD (OTS)
- Jill Brown, BSN (OTS)
- E. Dennis Bashaw, PharmD (OCP)

FDA CDER OGD (Other Offices)

- Suman Dandamudi, PhD
- Ravi Juluru, PhD
- Ethan Stier, PhD
- Bing Li, PhD
- Utpal Munshi, PhD
- Dale Conner, PharmD
- Andrew LeBoeuf, JD

