

#### IN VITRO CHARACTERIZATION OF TOPICAL SEMISOLID DOSAGE FORMS

**3<sup>rd</sup> PQRI/FDA Conference on Advancing Product Quality:** 

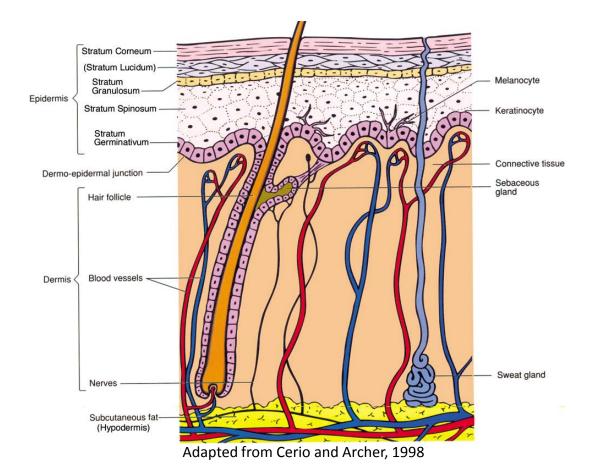
March 22<sup>nd</sup>, 2017

#### Sam Raney, Ph.D.

**Scientific Lead for Topical and Transdermal Drug Products** U.S. Food and Drug Administration, Office of Generic Drugs

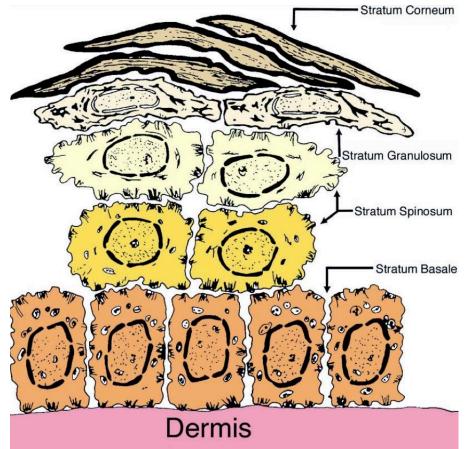
#### Disclaimer




- The views expressed in this presentation do not reflect the official policies of the FDA, or the Department of Health and Human Services; nor does any mention of trade names, commercial practices, or organization imply endorsement by the United States Government.
- I do not have any financial interest or conflict of interest with any pharmaceutical companies.

## Impact of Product Quality Attributes

- It is widely understood that the formulation of a topical semisolid dosage form matters greatly
- It is now increasingly clear how excipients exert their influence, by modulating the physicochemical and microstructural arrangement of matter in the dosage form
- The resulting physical and structural characteristics of topical dosage forms, and their metamorphic properties on the skin, can directly influence topical bioavailability


#### **Human Skin Structure**

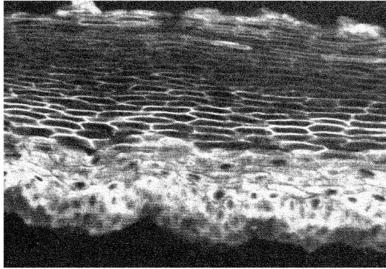


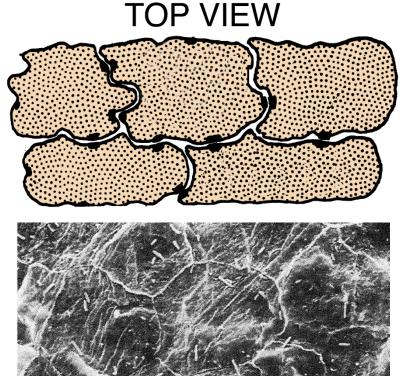


#### **Human Skin Differentiation**






Adapted from Schaefer and Redelmeier, 1996


#### **Skin Permeation Pathway**

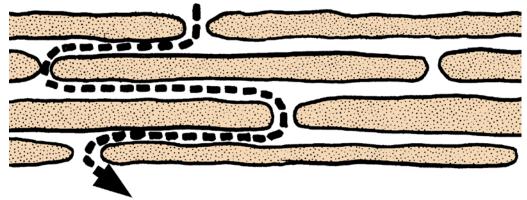


#### SIDE VIEW

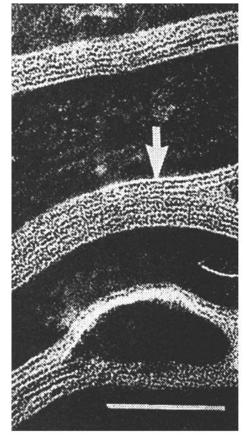







Drawings adapted from Odland, 1971.

Micrograph accompanying "side view" from Christophers and Laurence, 1976.


Micrograph accompanying "top view" from Singh and Singh, 1995.

### **Diffusion of Topical Compounds**





Drawing adapted from Odland, 1971. Micrograph Fartasch et al., 1998.



FDA

## **Diffusion of Topical Compounds**

• Katz & Poulsen, 1971 (Fick's Law of Diffusion)

$$J = \frac{P \times D \times \Delta C}{l}$$

- J = Flux (e.g.  $\mu$ g/cm<sup>2</sup>/hour)
- C = Concentration
- P = Partition Coefficient
- D = Diffusion Coefficient
- / = Length of Travel

**D**)/

## **Diffusion of Topical Compounds**

• Franz & Lehman, 1995 (Finite Dose Equation)

$$J = 2hpDC_0 \sum_{n=1}^{\infty} \frac{\alpha_n e^{-D\alpha_n^2 t}}{\sin \alpha_n l \left[ l \left( \alpha_n^2 + h^2 \right) + h \right]}$$

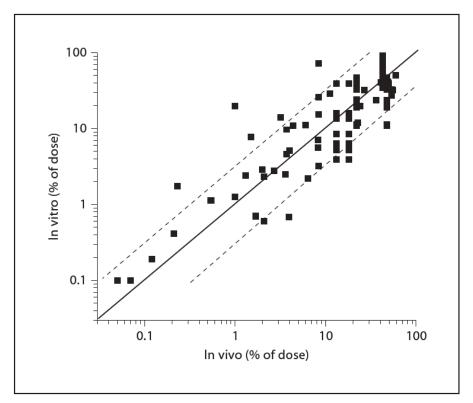
- Relevant to clinically applied thin film doses
- Accounts for the thickness of the applied dose as well as dose depletion over time

### Impact of Product Quality Attributes

- FDA
- Product Quality and Composition can Affect: • The phase states and the arrangement of matter Drug diffusion within the dosage form • Drug partitioning from the dosage form into the SC Alteration of skin structure and chemistry • Drug diffusion within the skin itself • Drug delivery & bioavailability at the target site • Skin (de)hydration, irritation or damage Metamorphosis of the dosage form on the skin

#### **Tests of Product Quality Attributes**



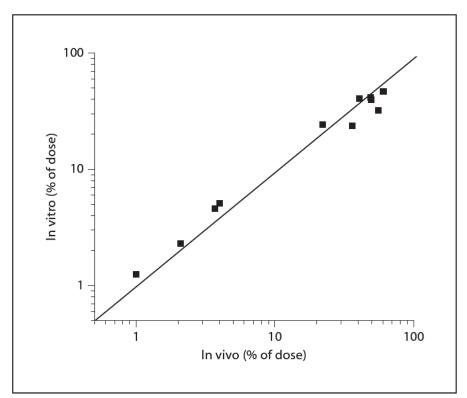

- Potential CQAs and Tests:
  - Microscopic Analyses of Microstructure (e.g., Globules)
  - Rheological Analyses (incl. Texture, Tribology, etc.)
  - Dissolved vs. Undissolved Amounts of the Drug
  - Concentration of Drug in the Continuous Phase
  - Size Distribution of Globules/Particles
  - Drug Polymorphic State (Raman, XRD, etc.)
  - Drug Crystalline Habit (Optical Microscopy)
  - Drying Rate (Solvent/Water Activity)
  - o Density
  - о рН
  - o Etc.

#### **IVPT:** In Vitro In Vivo Correlation



12

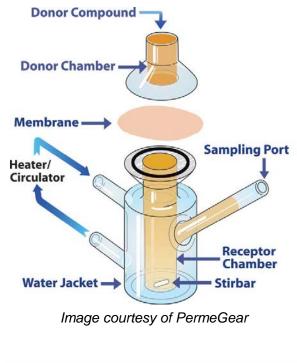
• 92 IVIVC Data Sets (Different Drugs & Formulations)

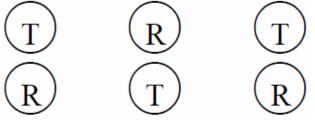


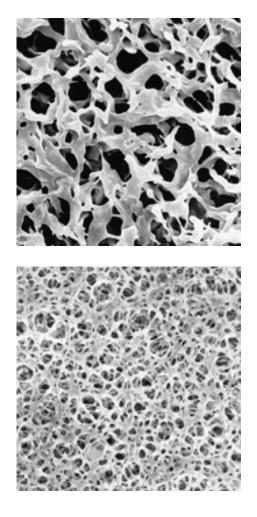

**Fig. 1.** IVIV ratios of total absorption for all 92 data sets plotted on log-log scale. The IVIV ratios ranged from 0.18 to 19.7, with an overall mean of 1.6. Solid line: ideal 1:1 correlation. Dashed lines:  $\pm$  3-fold difference from ideal.

#### **IVPT:** In Vitro In Vivo Correlation

• Subset of 11 Harmonized IVIVC Data Sets


HD)





**Fig. 2.** IVIV ratios of total absorption for 11 fully harmonized data sets plotted on log-log scale. The IVIV ratios ranged from 0.58 to 1.28, with an overall mean of 0.96. Line: ideal 1:1 correlation.

#### In Vitro Release Test (IVRT)





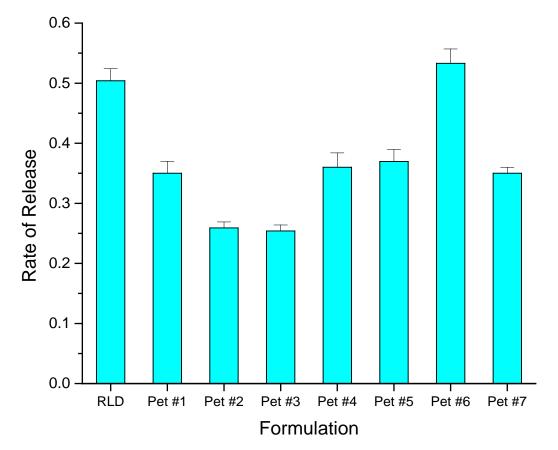




#### IVPT vs. IVRT



#### IVPT (Permeation)


- Human Skin
- Unoccluded Dose
- Finite Dose
- Flux Profile (J<sub>max</sub>, etc.)
- Physiological Media
- pg to ng Range
- Product stays 'dry'
- IVIV Correlation
- Donor Variability

#### ➢ IVRT (Release)

- Synthetic Membrane
- Occluded Dose
- Infinite Dose
- Release Rate (slope)
- Alcoholic Media
- μg to mg Range
- Product-Media Interface
- Specific to the Formulation
- Relative Consistency

#### Can IVRT Discriminate Microstructure?

• IVRT <u>did discriminate</u> 8 formulations made with Petrolatum, USP from different sources



Data provided courtesy of Paul A. Lehman and Dr. Thomas J. Franz

### **Can IVRT Discriminate Microstructure? FDA**

• IVRT <u>did not discriminate</u> 14 formulations with substantial variations in particle size

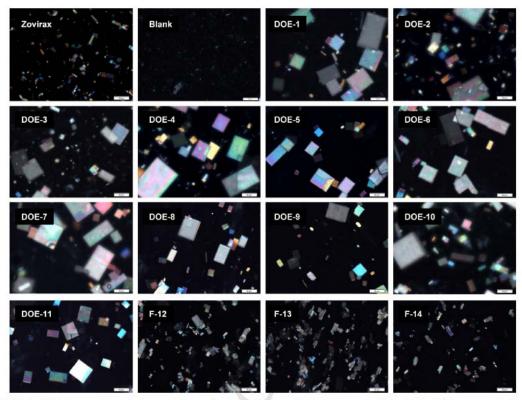
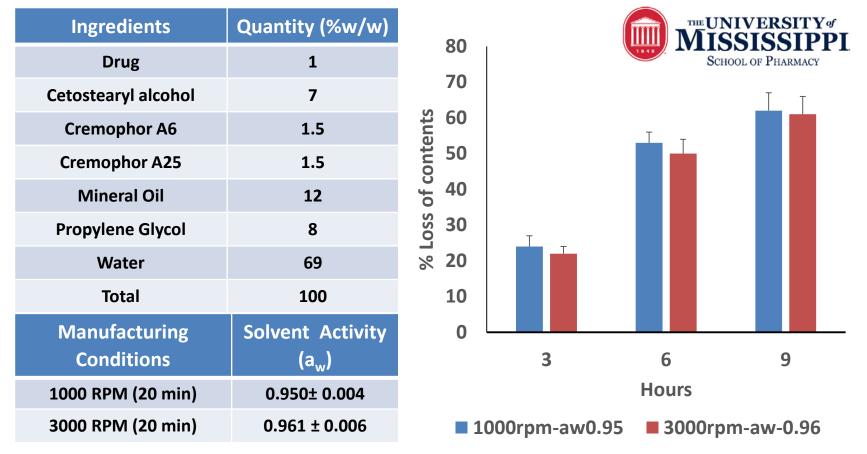
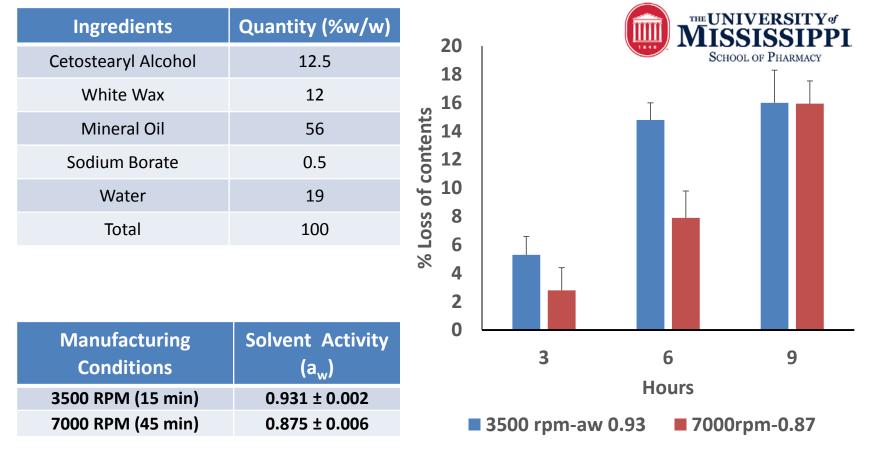




Fig. 3. Polarized light microscopy images of various acyclovir cream formulations (200× magnification, the bar represents 50 µm). At least 10 images were taken for each sample with total of 200–500 particles in order to calculate the size distribution.

Krishnaiah, Y.S.R., et al., Development of performance matrix for generic product equivalence of acyclovir topical creams. Int J Pharmaceut (2014), http://dx.doi.org/10.1016/j.ijpharm.2014.07.034

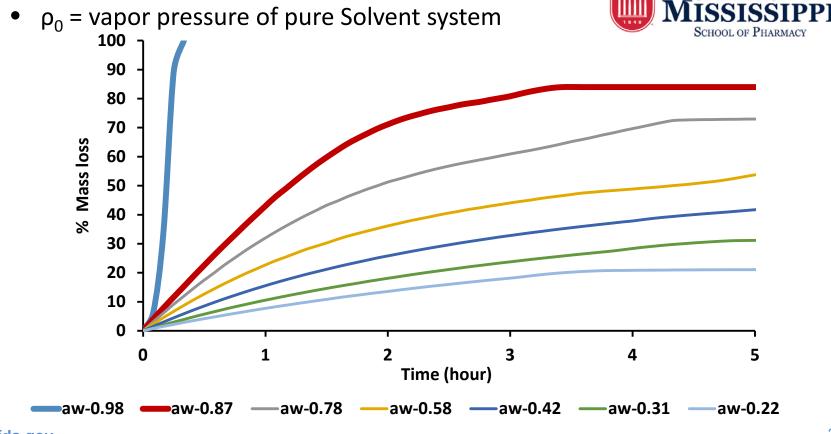



• Solvent Activity of Q1/Q2 Identical Creams Prof. Narasimha Murthy FDA Award U01-FD005223



Data provided courtesy of Prof. Narasimha Murthy

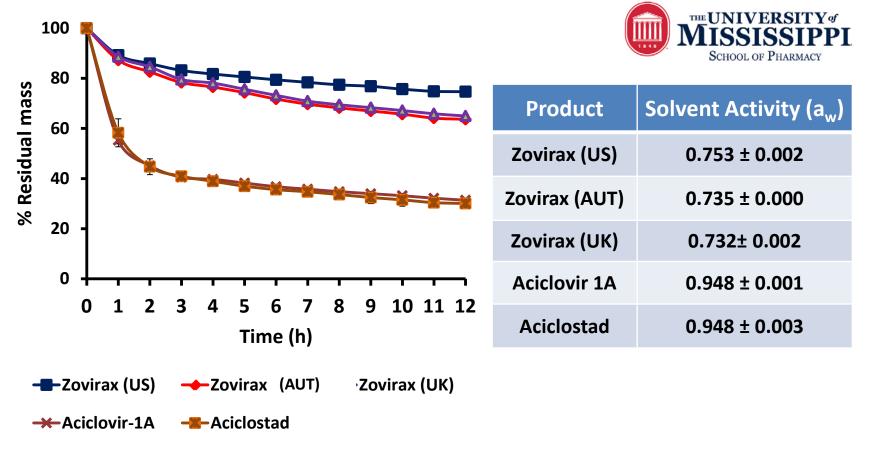



• Solvent Activity of Q1/Q2 Identical Creams Prof. Narasimha Murthy FDA Award U01-FD005223



www.fda.gov

Data provided courtesy of Prof. Narasimha Murthy


- Solvent Activity  $(a_s) = \rho/\rho_0$  **Prof. Narasimha Murthy** FDA Award U01-FD005223
  - $\rho$  = partial vapor pressure of Solvents in the product



FDA

Data provided courtesy of Prof. Narasimha Murthy

• Solvent Activity and Drying Rate Prof. Narasimha Murthy FDA Award U01-FD005223

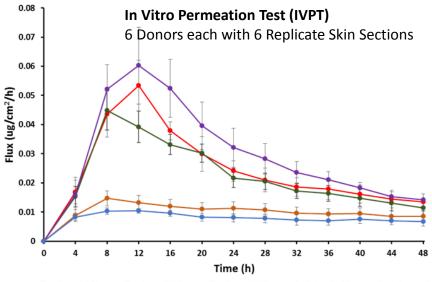


www.fda.gov

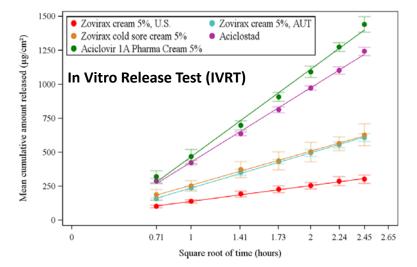
Data provided courtesy of Prof. Narasimha Murthy

FDA

## **Orthogonal In Vitro Testing Approach**


• 5 Pharmaceutically Equivalent Acyclovir Creams

| Zovirax             | Zovirax             | Zovirax             | Aciclostad       | Aciclovir-1A     |
|---------------------|---------------------|---------------------|------------------|------------------|
| (USA)               | (UK)                | (Austria)           | (Austria)        | (Austria)        |
| Water               | Water               | Purified water      | Water            | Water            |
| Propylene glycol    | Propylene glycol    | Propylene glycol    | Propylene glycol | Propylene glycol |
| Mineral oil         | Liquid Paraffin     | Liquid Paraffin     | Liquid Paraffin  | Viscous Paraffin |
| White petrolatum    | White soft paraffin | White Vaseline      | White Vaseline   | White Vaseline   |
| Cetostearyl alcohol | Cetostearyl alcohol | Cetostearyl alcohol | Cetyl alcohol    | Cetyl alcohol    |
| SLS                 | SLS                 | SLS                 |                  |                  |
| Poloxamer 407       | Poloxamer 407       | Poloxamer 407       |                  |                  |
|                     | Dimethicone 20      | Dimethicone 20      | Dimethicone      | Dimethicone      |
|                     | Arlacel 165         | Glyceryl Mono       | Glyceryl Mono    | Glyceryl Mono    |
|                     |                     | Stearate            | Stearate         | Stearate         |
|                     | Arlacel 165         | Polyoxyethylene     | Macrogol         | Polyoxyethylene  |
|                     |                     | stearate            | stearate         | stearate         |

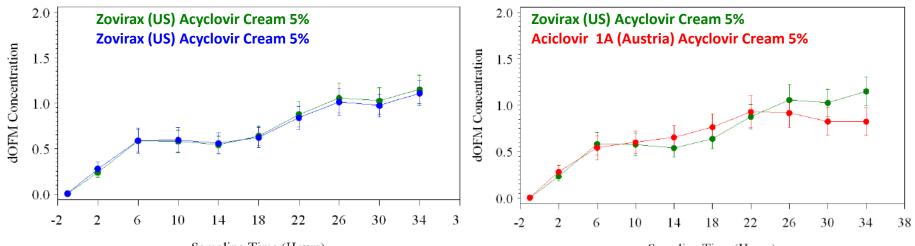

# Orthogonal In Vitro Testing Approach

|                                                                                                                                            | Zovirax                                                               | Zovirax                                                               | Zovirax                                                                      | Aciclostad                                                              | Aciclovir-1A                                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------|
|                                                                                                                                            | (USA)                                                                 | (UK)                                                                  | (Austria)                                                                    | (Austria)                                                               | (Austria)                                                             |
|                                                                                                                                            | Water                                                                 | Water                                                                 | Purified water                                                               | Water                                                                   | Water                                                                 |
|                                                                                                                                            | Propylene glycol                                                      | Propylene glycol                                                      | Propylene glycol                                                             | Propylene glycol                                                        | Propylene glycol                                                      |
|                                                                                                                                            | Mineral oil                                                           | Liquid Paraffin                                                       | Liquid Paraffin                                                              | Liquid Paraffin                                                         | Viscous Paraffin                                                      |
|                                                                                                                                            | White petrolatum                                                      | White soft paraffin                                                   | White Vaseline                                                               | White Vaseline                                                          | White Vaseline                                                        |
|                                                                                                                                            | Cetostearyl alcohol                                                   | Cetostearyl alcohol                                                   | Cetostearyl alcohol                                                          | Cetyl alcohol                                                           | Cetyl alcohol                                                         |
|                                                                                                                                            | SLS                                                                   | SLS                                                                   | SLS                                                                          |                                                                         |                                                                       |
|                                                                                                                                            | Poloxamer 407                                                         | Poloxamer 407                                                         | Poloxamer 407                                                                |                                                                         |                                                                       |
|                                                                                                                                            |                                                                       | Dimethicone 20                                                        | Dimethicone 20                                                               | Dimethicone                                                             | Dimethicone                                                           |
|                                                                                                                                            |                                                                       |                                                                       | Glyceryl Mono                                                                | Glyceryl Mono                                                           | Glyceryl Mono                                                         |
|                                                                                                                                            |                                                                       | Arlacel 165                                                           | Stearate                                                                     | Stearate                                                                | Stearate                                                              |
|                                                                                                                                            |                                                                       | Arlacel 165                                                           | Polyoxyethylene<br>stearate                                                  | Macrogol<br>stearate                                                    | Polyoxyethylene<br>stearate                                           |
|                                                                                                                                            |                                                                       |                                                                       |                                                                              |                                                                         |                                                                       |
| Density (g/cc)                                                                                                                             | 1.02                                                                  | 1.02                                                                  | 1.02                                                                         | 1.02                                                                    | 1.01                                                                  |
| Density (g/cc)<br>Content Uniformity (%)                                                                                                   | 1.02<br>97.9 ± 0.7                                                    | 1.02<br>99.6 ± 1.4                                                    |                                                                              |                                                                         |                                                                       |
| 1 10. 1                                                                                                                                    |                                                                       |                                                                       | 1.02                                                                         | 1.02                                                                    | 1.01                                                                  |
| Content Uniformity (%)                                                                                                                     | 97.9 ± 0.7                                                            | 99.6 ± 1.4                                                            | 1.02<br>100 ± 2.2                                                            | 1.02<br>99.7 ± 1.7                                                      | 1.01<br>98.3 ± 2.6                                                    |
| Content Uniformity (%)<br>Polymorphic Form                                                                                                 | 97.9 ± 0.7<br>2,3 hydrate                                             | 99.6 ± 1.4<br>2,3 hydrate                                             | 1.02<br>100 ± 2.2<br>2,3 hydrate                                             | 1.02<br>99.7 ± 1.7<br>2,3 hydrate                                       | 1.01<br>98.3 ± 2.6<br>2,3 hydrate                                     |
| Content Uniformity (%)<br>Polymorphic Form<br>Crystilline Habit                                                                            | 97.9 ± 0.7<br>2,3 hydrate<br>Rectangular                              | 99.6 ± 1.4<br>2,3 hydrate<br>Rectangular                              | 1.02100 ± 2.22,3 hydrateRectangular                                          | 1.02<br>99.7 ± 1.7<br>2,3 hydrate<br>Ovoid                              | 1.01<br>98.3 ± 2.6<br>2,3 hydrate<br>Ovoid                            |
| Content Uniformity (%)<br>Polymorphic Form<br>Crystilline Habit<br>Particle size (d50) (µm)                                                | 97.9 ± 0.7<br>2,3 hydrate<br>Rectangular<br>3.8                       | 99.6 ± 1.4<br>2,3 hydrate<br>Rectangular<br>2.5                       | 1.02<br>100 ± 2.2<br>2,3 hydrate<br>Rectangular<br>3.4                       | 1.02<br>99.7 ± 1.7<br>2,3 hydrate<br>Ovoid<br>6.8                       | 1.01<br>98.3 ± 2.6<br>2,3 hydrate<br>Ovoid<br>6                       |
| Content Uniformity (%)<br>Polymorphic Form<br>Crystilline Habit<br>Particle size (d50) (µm)<br>pH                                          | 97.9 ± 0.7<br>2,3 hydrate<br>Rectangular<br>3.8<br>7.74               | 99.6 ± 1.4<br>2,3 hydrate<br>Rectangular<br>2.5<br>7.96               | 1.02<br>100 ± 2.2<br>2,3 hydrate<br>Rectangular<br>3.4<br>7.54               | 1.02<br>99.7 ± 1.7<br>2,3 hydrate<br>Ovoid<br>6.8<br>4.58               | 1.01<br>98.3 ± 2.6<br>2,3 hydrate<br>Ovoid<br>6<br>6.05               |
| Content Uniformity (%)<br>Polymorphic Form<br>Crystilline Habit<br>Particle size (d50) (µm)<br>pH<br>Work of Adhesion                      | 97.9 ± 0.7<br>2,3 hydrate<br>Rectangular<br>3.8<br>7.74<br>59         | 99.6 ± 1.4<br>2,3 hydrate<br>Rectangular<br>2.5<br>7.96<br>81         | 1.02<br>100 ± 2.2<br>2,3 hydrate<br>Rectangular<br>3.4<br>7.54<br>60         | 1.02<br>99.7 ± 1.7<br>2,3 hydrate<br>Ovoid<br>6.8<br>4.58<br>17         | 1.01<br>98.3 ± 2.6<br>2,3 hydrate<br>Ovoid<br>6<br>6.05<br>18         |
| Content Uniformity (%)<br>Polymorphic Form<br>Crystilline Habit<br>Particle size (d50) (µm)<br>pH<br>Work of Adhesion<br>Drug in Aq (mg/g) | 97.9 ± 0.7<br>2,3 hydrate<br>Rectangular<br>3.8<br>7.74<br>59<br>0.49 | 99.6 ± 1.4<br>2,3 hydrate<br>Rectangular<br>2.5<br>7.96<br>81<br>0.64 | 1.02<br>100 ± 2.2<br>2,3 hydrate<br>Rectangular<br>3.4<br>7.54<br>60<br>0.49 | 1.02<br>99.7 ± 1.7<br>2,3 hydrate<br>Ovoid<br>6.8<br>4.58<br>17<br>0.37 | 1.01<br>98.3 ± 2.6<br>2,3 hydrate<br>Ovoid<br>6<br>6.05<br>18<br>0.26 |

1000 Thixotropic Rheology Acteorra USA -Zovira USA -Zovira US gsk -Zovira AUS -Zovira AUS



-Zovirax (US) -Zovirax (UK) -Zovirax (AU) -Aciclovir-1A -Aciclostad




www.fda.gov

Data provided courtesy of Prof. Narasimha Murthy & Dr. Frank Sinner

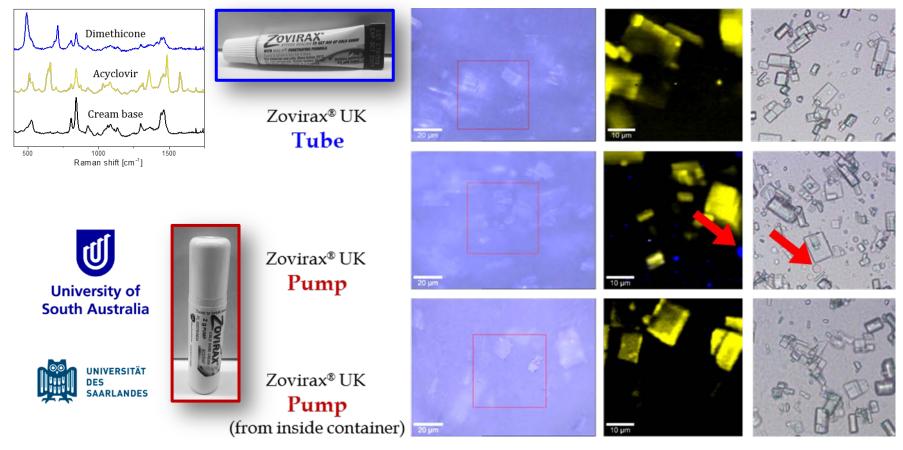
## In Vivo Bioavailability/Bioequivalence

• Dermal Pharmacokinetics by dOFM (20 subjects)



Sampling Time (Hours)

Sampling Time (Hours)


| Outcome variable       | Cl <sub>90%</sub>                            |                                | Outcome variable       | Cl <sub>90%</sub>                            |
|------------------------|----------------------------------------------|--------------------------------|------------------------|----------------------------------------------|
| log(AUC0-36h)          | [-0.148 ; 0.162]<br>or<br>[86.2 % ; 117.5 %] |                                | log(AUC0-36h)          | [-0.369 ; 0.050]<br>or<br>[69.1 % ; 105.2 %] |
| log(C <sub>max</sub> ) | [-0.155 ; 0.190]<br>or<br>[85.7 % ; 120.9%]  | JOANNEUM<br>RESEARCH<br>HEALTH | log(C <sub>max</sub> ) | [-0.498 ; 0.022]<br>or<br>[60.8 % ; 102.2%]  |

Data provided courtesy of Dr. Frank Sinner

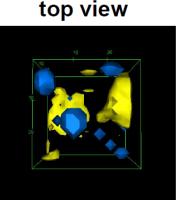
www.fda.gov Bodenlenz et al. (2017) Open Flow Microperfusion as a Dermal Pharmacokinetic Approach to Evaluate Topical Bioequivalence. 24 Clin Pharmacokinet. 2017 Jan;56(1):91-98. doi: 10.1007/s40262-016-0442-z (FREE Full Text Article)

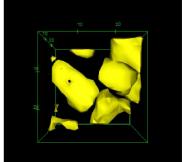
# Influence of Dispensing Stress on Q3

• Influence of Dose Dispensing on Product Quality Prof. Michael Roberts FDA Award U01-FD005226

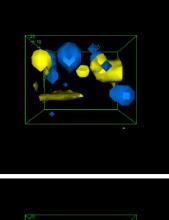


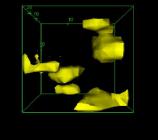
www.fda.gov


Data provided courtesy of Prof. Michael Roberts & Prof. Maike Windbergs


#### **FDA Influence of Dispensing Stress on Q3**

 Influence of Dose Dispensing on Product Quality Prof. Michael Roberts FDA Award U01-FD005226



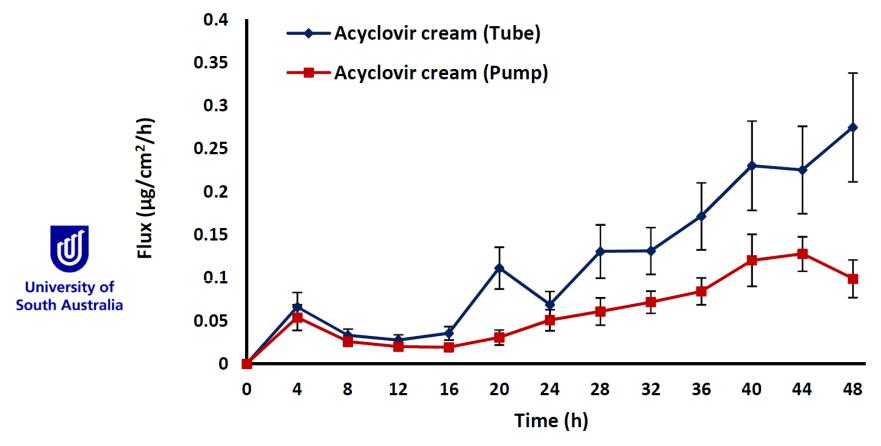








side view






www.fda.gov

Data provided courtesy of Prof. Michael Roberts & Prof. Maike Windbergs

## Influence of Dispensing Stress on Q3

• Influence of Dose Dispensing on Product Quality Prof. Michael Roberts FDA Award U01-FD005226



Data provided courtesy of Prof. Michael Roberts

#### **Summary**



All product characterization test methods, both in vitro and in vivo, have limitations

...but they don't all have the same limitations!

- The collective weight of evidence from orthogonal assessments comparing product quality and performance is more powerful than any single test method.
- The key is to utilize tests that systematically and collectively mitigate the risk of failure modes relevant to the therapeutic performance of the drug product.

#### Acknowledgements



#### **U.S. Food & Drug Administration**

- Robert Lionberger, PhD
- Markham Luke, MD, PhD
- Yi Zhang, PhD
- Priyanka Ghosh, PhD

#### **Scientific Colleagues**

- Paul Lehman, MSc
- Thomas Franz, MD

#### **Research Collaborators**

Funding for research projects was made possible, in part, by the FDA through: GDUFA Award U01FD00**5223** 

- Narasimha Murthy, PhD GDUFA Award U01FD00**5226**
- Michael Roberts, PhD GDUFA Award U01FD00**4946**
- Frank Sinner, PhD

