

FACILITATING PATIENT ACCESS TO HIGH QUALITY GENERICS:

A Case Study in Regulatory Science

American Academy of Dermatology Forum on FDA Hot Topics: The Evolving Regulatory Landscape March 3rd, 2017

Sam Raney, PhD

Scientific Lead for Topical and Transdermal Drug Products
U.S. Food and Drug Administration, Office of Generic Drugs

Disclaimer

 The views expressed in this presentation do not reflect the official policies of the FDA, or the Department of Health and Human Services; nor does any mention of trade names, commercial practices, or organization imply endorsement by the United States Government.

• I do not have any financial interest or conflict of interest with any pharmaceutical companies.

Mission of the Office of Generic Drugs

- The mission of the Office of Generic Drugs is to make high quality, affordable medicines available to the public.
- Key initiatives to support the mission
 - High Quality generics (product quality characterization)
 - Availability of generics (efficient bioequivalence standards)
- How can regulatory science positively impact both these initiatives?

High Quality Generic Drug Products

What does "quality" mean for a drug product?

Fitness for Purpose

"The totality of features and characteristics of a product... that bear on its ability to satisfy stated or implied needs"

- International Organization for Standardization (ISO)

Control of Failure Modes

"Good pharmaceutical quality represents an acceptably low risk of failing to achieve the desired clinical attributes."

- Dr. Janet Woodcock, Director, FDA CDER
Woodcock, J. (2004) The concept of pharmaceutical quality. Am Pharm Review 7(6):10-15

High Quality Generic Drug Products

- Product qualities (attributes) that we must consider
 - The composition of matter in the product
 - The states of matter in the product
 - The arrangement of matter in the product
 - Drug diffusion within the dosage form
 - Drug partitioning from the dosage form into the SC
 - Alteration of skin structure and chemistry
 - Drug diffusion within the skin itself
 - Drug delivery & bioavailability at the target site
 - Skin (de)hydration, irritation, burning or cooling (patient perceptions)
 - Metamorphosis of the dosage form on the skin
 - Bioavailability (BA) and Bioequivalence (BE)

High Quality Generic Drug Products

- We must consider how failure modes for therapeutic performance arise from and convolute among multiple product quality attributes
- We must consider how the risk of all such therapeutic performance failure modes can be mitigated
- We must understand what product quality attributes to characterize, what characterization techniques to use, and how to interpret the collective results

Available (and Affordable) Products

What is the impact of "efficient" BE standards?

Overall Drug Products ¹

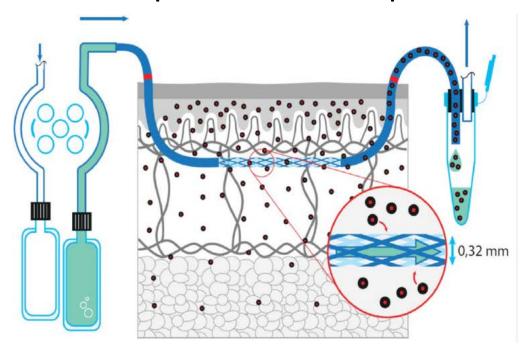
- 89% of prescriptions dispensed in 2015 were for generics
- \$1.46 trillion saved in healthcare costs 2006-2015

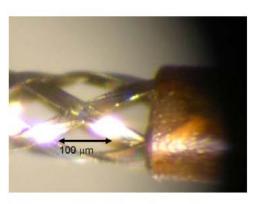
Topical Drug Products²

- 37.7% of all topical drug products have generics available
- **76.7%** of topical **steroid** products have generics available, illustrating the impact of more efficient BE standards³

¹ GPhA 2016 Generic Drug Savings & Access in the United States Report

² Office of Generic Drugs Topical & Transdermal Products Database


³ Excludes products for which generics cannot yet be made available



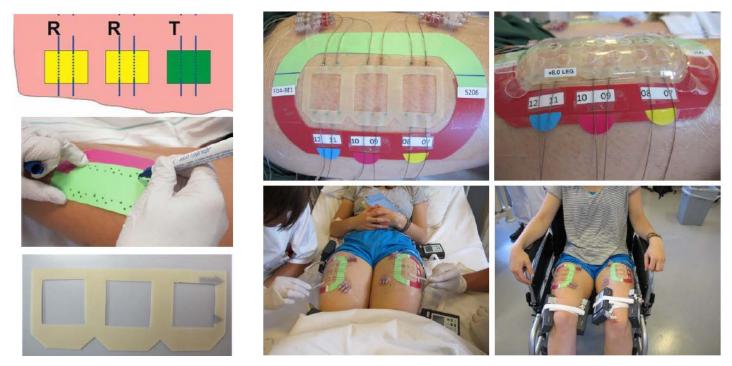
- Could cutaneous pharmacokinetic methods support the development of more efficient pathways for approval of topical drug products?
- Could such pathways facilitate the availability of affordable, high quality topical generic drug products?

Dermal Open Flow Microperfusion (dOFM)

CE-certified for clinical use

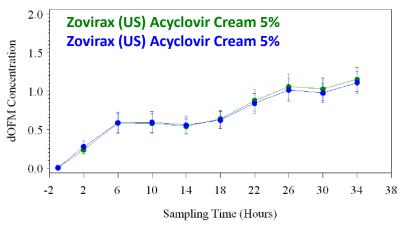
dOFM System Validation and Study Controls

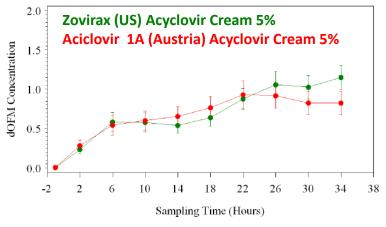
Pharmaceutically Equivalent Creams

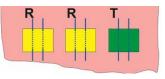


5 Pharmaceutically Equivalent Acyclovir 5% Creams

Zovirax	Zovirax	Zovirax	Aciclostad	Aciclovir-1A
(USA)	(UK)	(Austria)	(Austria)	(Austria)
Water	Water	Purified water	Water	Water
Propylene glycol	Propylene glycol	Propylene glycol	Propylene glycol	Propylene glycol
Mineral oil	Liquid Paraffin	Liquid Paraffin	Liquid Paraffin	Viscous Paraffin
White petrolatum	White soft paraffin	White Vaseline	White Vaseline	White Vaseline
Cetostearyl alcohol	Cetostearyl alcohol	Cetostearyl alcohol	Cetyl alcohol	Cetyl alcohol
SLS	SLS	SLS		
Poloxamer 407	Poloxamer 407	Poloxamer 407		
	Dimethicone 20	Dimethicone 20	Dimethicone	Dimethicone
	Arlacel 165	Glyceryl Mono	Glyceryl Mono	Glyceryl Mono
		Stearate	Stearate	Stearate
	Arlacel 165	Polyoxyethylene	Macrogol	Polyoxyethylene
		stearate	stearate	stearate




dOFM: Testing Positive and Negative Controls for BE


Dermal Pharmacokinetics by dOFM

Outcome variable	CI _{90%}	
log(AUC0-36h)	[-0.148 ; 0.162] or [86.2 % ; 117.5 %]	
log(C _{max})	[-0.155 ; 0.190] or [85.7 % ; 120.9%]	

IOANNELIM	Wille.
JOANNEUM RESEARCH HEALTH	
HEALTH	

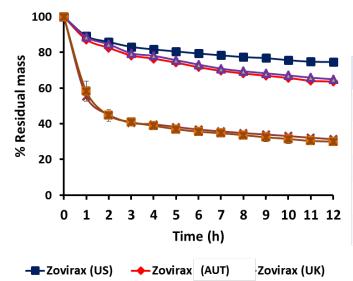
Outcome variable	Cl _{90%}	
log(AUC0-36h)	[-0.369 ; 0.050] or [69.1 % ; 105.2 %]	
log(C _{max})	[-0.498 ; 0.022] or [60.8 % ; 102.2%]	

Data provided courtesy of Dr. Frank Sinner, Joanneum Research, Austria

Bodenlenz et al. (2017) Open Flow Microperfusion as a Dermal Pharmacokinetic Approach to Evaluate Topical Bioequivalence.

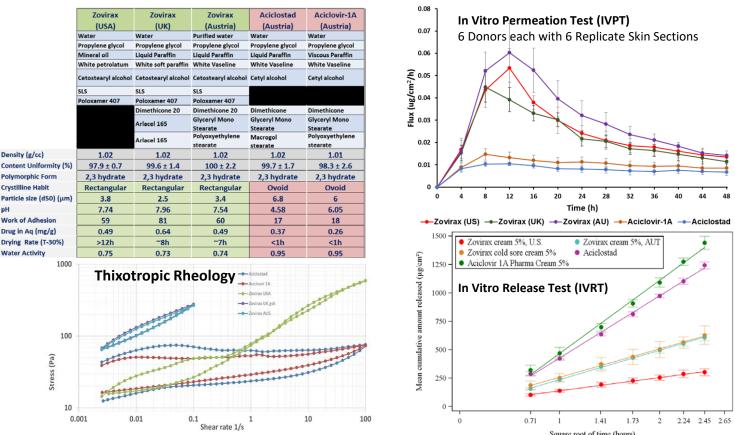
WWW.fda.gov Clin Pharmacokinet. 2017 Jan;56(1):91-98. doi: 10.1007/s40262-016-0442-z (FREE Full Text Article)

Pharmaceutically Equivalent Creams

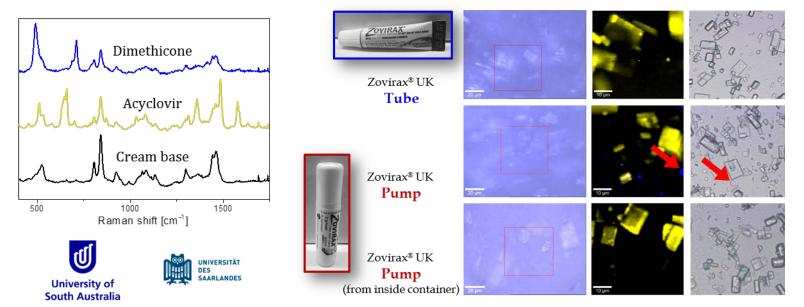

5 Pharmaceutically Equivalent Acyclovir Creams

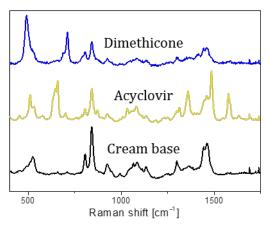
Zovirax	Zovirax	Zovirax	Aciclostad	Aciclovir-1A
(USA)	(UK)	(Austria)	(Austria)	(Austria)
Water	Water	Purified water	Water	Water
Propylene glycol	Propylene glycol	Propylene glycol	Propylene glycol	Propylene glycol
Mineral oil	Liquid Paraffin	Liquid Paraffin	Liquid Paraffin	Viscous Paraffin
White petrolatum	White soft paraffin	White Vaseline	White Vaseline	White Vaseline
Cetostearyl alcohol	Cetostearyl alcohol	Cetostearyl alcohol	Cetyl alcohol	Cetyl alcohol
SLS	SLS	SLS		
Poloxamer 407	Poloxamer 407	Poloxamer 407		
	Dimethicone 20	Dimethicone 20	Dimethicone	Dimethicone
	Arlacel 165 Arlacel 165	Glyceryl Mono	Glyceryl Mono	Glyceryl Mono
		Stearate	Stearate	Stearate
		Polyoxyethylene	Macrogol	Polyoxyethylene
Arracer 103	stearate	stearate	stearate	

→ Aciclovir-1A

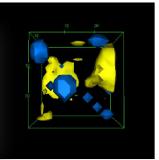

- Arrangement of Matter
- Particle Size Analysis
- Texture Analysis
- Water Activity
- Drying Rate
- Rheology
- Density
- pH
- Etc.

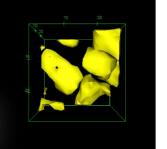
Product	Solvent Activity (a _w)	
Zovirax (US)	0.753 ± 0.002	
Zovirax (AUT)	0.735 ± 0.000	
Zovirax (UK)	0.732± 0.002	
Aciclovir 1A	0.948 ± 0.001	
Aciclostad	0.948 ± 0.003	

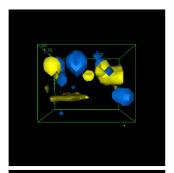

- Aciclostad

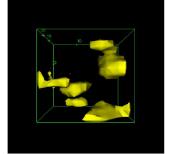


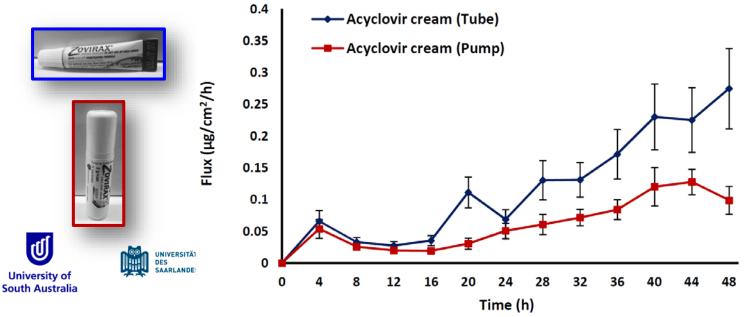
Influence of Dose Dispensing on Product Quality
 Prof. Michael Roberts FDA Award U01-FD005226


Influence of Dose Dispensing on Product Quality
 Prof. Michael Roberts FDA Award U01-FD005226









Influence of Dose Dispensing on Product Quality
 Prof. Michael Roberts FDA Award U01-FD005226

Summary

- OGD is developing novel, sensitive and efficient in vivo and in vitro approaches to evaluate local BA and BE for complex semisolid topical drug products
- Sophisticated product characterizations systematically mitigate the risk of failure modes for therapeutic equivalence, ensuring bioequivalence by design
- These initiatives can now facilitate the availability of high quality topical drug products for patients who may not have previously had access to the medicine

Draft Guidance on Acyclovir Published!

Docket Open for Comment

Contains Nonbinding Recommendations

Draft Guidance on Acyclovir

This draft guidance, when finalized, will represent the current thinking of the Food and Drug Administration (FDA, or the Agency) on this topic. It does not establish any rights for any person and is not binding on FDA or the public. You can use an alternative approach if it satisfies the requirements of the applicable statutes and regulations. To discuss an alternative approach, contact the Office of Generic Drugs.

Active Ingredient: Acyclovir

Dosage Form; Route: Cream; topical

Recommended Studies: Two options: in vitro or in vivo study

Acknowledgements

U.S. Food & Drug Administration

- Robert Lionberger, PhD
- Markham Luke, MD, PhD
- Yi Zhang, PhD
- Priyanka Ghosh, PhD

Research Collaborators

Funding for research projects was made possible, in part, by the FDA through:

GDUFA Award U01FD005223

Narasimha Murthy, PhD

GDUFA Award U01FD00**5226**

Michael Roberts, PhD

GDUFA Award U01FD004946

Frank Sinner, PhD