

Practical Considerations for IVRT Studies with Topical Drug Products Submitted in ANDAs

Best Practices for Topical Generic Product Development and ANDA Submission

Tannaz Ramezanli, Pharm.D., Ph.D.

Senior Pharmacologist

Division of Therapeutic Performance I/Office of Research and Standards

CDER | U.S. FDA

August 11, 2022

Learning Objectives

- Describe considerations for IVRT study design and validation when used as a component of characterization-based bioequivalence (BE) approaches
- Provide clarifications related to IVRT best practices and common questions

IVRT

- IVRT is a performance test to study the arrangement of matter.
- In characterization-based approach, IVRT is considered an in vitro BE study.

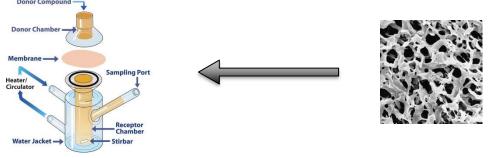


Image courtesy of PermeGear

Major IVRT Study Phases:

- IVRT method development
- IVRT method validation
- IVRT pivotal study

IVRT Method Development

- Exploratory in nature
- Report which IVRT studies were done using a validated analytical method
- Sequence of selecting method parameters:
 - Equipment
 - Receptor solution
 - Membrane
 - Others (e.g., product dose amount, sampling times, stirring/agitation rate, etc)

IVRT Method validation

Equipment Qualification

- Empirical measurements along with manufacturer information (e.g., dimensions of the orifice, volume of the receptor compartment) of the diffusion cells.
- The equipment should control the diffusion cell thermoregulation.
- Membrane surface temperature is verified to be stable before dosing (e.g., at 32°C ± 1°C).

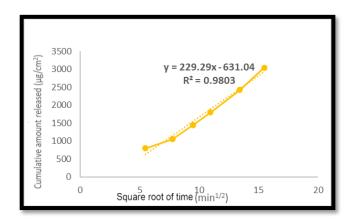
Qualification of the Receptor Solution

- Empirical solubility of the drug in the receptor solution: drug solubility exceeds the highest sample concentration in the IVRT, ideally by an order of magnitude
- Stability of the drug in the receptor solution
- Acceptable linearity and precision of the resulting drug release rate in an IVRT (r² value of ≥ 0.97)

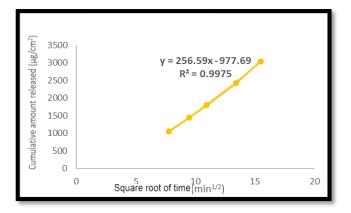
Membrane Qualification

- Membrane's effective pore size (e.g., 0.45 μm)
- Membrane inertness in relation to membrane binding of the drug in the receptor solution at a concentration relevant to the range of drug concentrations in the receptor solution during the IVRT
- Chemical compatibility with the receptor solution
- Acceptable precision and linearity (r² value of ≥ 0.97)

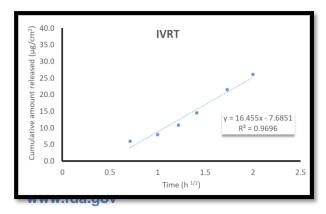
Receptor Solution Sampling Qualification

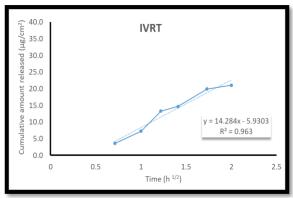


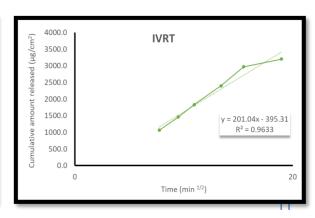
- Accuracy and precision of receptor sample collection
- Sampling technique can reliably collect a consistent volume of the sample from the well-mixed volume of the receptor compartment
- Submit manufacturer's specification for the accuracy and precision of receptor solution sampling


Receptor Solution Sampling

- Sampling frequency
- Number of sampling timepoints






Acceptable Linearity

- The linearity of the drug release across all time points should be calculated and reported <u>for each diffusion cell</u> and compared within and across all IVRT runs.
- For the release rate to be considered suitably linear, it should have an r² value ≥ 0.97 across IVRT study duration.

Duration of the IVRT Study

- IVRT duration (e.g., 4-6 hours)
- Duration of < 4 hours may be insufficient to assess whether the release rates represent the steady state drug release kinetics
- Duration of < 4 hours (which is not recommended) may be justified by compelling experimental data

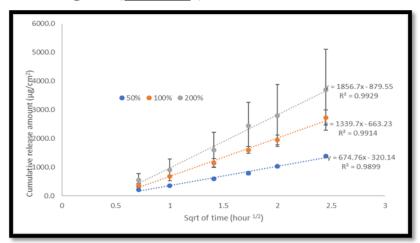
Dosing

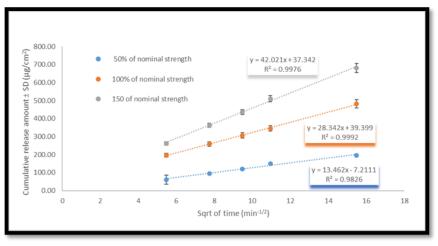
- Dose amount (pseudo-infinite dose)
- Dosing procedure for a selected apparatus
- Dose application method and its impact on product's microstructure
- The applied dose should be <u>occluded</u> during the IVRT study.

Dose Depletion (DD)

- DD is expressed as a percentage of the amount of drug in the applied dose. The average DD should be reported.
- Steady state release kinetics is assumed when DD is < 30%.
- For some topical products, steady state release kinetics may continue to be observed at higher percentage DD.
- A DD of >30% may be acceptable if the release rate remains suitably linear.

Precision and Reproducibility




- The intra-run and inter-run precision and reproducibility may be compared for the release rate calculated for each diffusion cell.
- A minimum intra-run and inter-run %CV ≤ 15% is recommended.
- A minimum of three independent precision and reproducibility runs is recommended.

IVRT Discrimination: Sensitivity

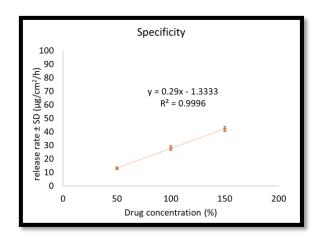
 Comparing the release rate from the <u>nominal reference</u> strength formulation with that from two comparable formulations: a higher strength (<u>150%</u>) and a lower strength (<u>50%</u>)

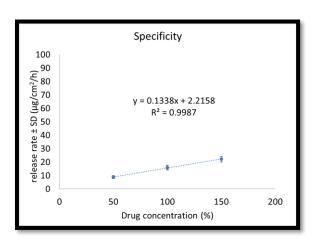
 Allowance may be made if a higher strength of test product is not feasible to formulate without substantial reformulation.

IVRT Discrimination

Selectivity

- Establish non-equivalent release rate between Test (T)/Reference standard (RS) product and altered strengths (50% and 150% nominal strength).
- 6 cells of nominal strength of the RS (100%) compared with 6 cells of altered strength (50% or 150%). All 12 cells being compared should have been run in parallel on the same day.


Supplemental selectivity


- Using products at the <u>same nominal strength</u>, but altered composition and/or manufacturing process
- The altered formulation may include changes in inactive ingredients, changes in inactive ingredient concentration(s), changes in the manufacturing processes, or combinations thereof. However, not all variations in a formulation will necessarily produce a difference in the release rate.

IVRT Discrimination: Specificity

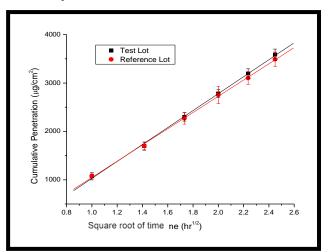
- E.g., the IVRT method is proportionally linear in its response to differences in release rates
- A minimum r^2 value ≥ 0.95

IVRT Robustness

Robustness testing encompasses

- Temperature variations (i.e., 1°C and +1°C relative to 32°C ± 1°C)
- Dose volume variations (e.g., +10% and -10% in the dose volume)
- Receptor solution variations (e.g., change in composition and/or pH)
- Mixing rate variation (i.e., differences in stirring speed, or without stirring)

Sample Analytical Method Validation



- IVRT validation and pivotal studies should use a validated analytical method for the receptor solution sample.
- Separate and specific reports should be submitted for the sample analysis method validation and for the IVRT method validation.
- The validation should be performed using chromatography software with audit trails and should include a multi-point calibration curve (not a single point).

IVRT Pivotal Study

- A single batch each of a designated RS and T products are evaluated
- Blinding, dosing (alternating pattern ABABAB or BABABA), and dosing procedure
- The release rates for T and R products are compared utilizing a Wilcoxon Rank Sum/Mann-Whitney rank test

References

- The recordings and meeting materials from Virtual public workshop hosted by the FDA and the Center for Research on Complex Generics (CRCG) on August 18-20, 2021, *In Vitro Release Test (IVRT) and In Vitro Permeation Test (IVPT) Methods: Best Practices and Scientific Considerations for ANDA Submissions*. Available at http://www.complexgenerics.org/IVRTIVPT/.
- USP chapter <1724>
- Other relevant FDA guidances

Acknowledgements

U.S. Food & Drug Administration

- Sam Raney, PhD
- Priyanka Ghosh, PhD
- Hiren Patel, PhD
- Markham Luke, MD, PhD
- Lei Zhang, PhD
- Robert Lionberger, PhD

Questions?

Tannaz Ramezanli, Pharm.D., Ph.D.

Senior Pharmacologist

Division of Therapeutic Performance I/Office of Research and Standard

CDER | U.S. FDA

August 11, 2022

