

Development of Efficient Alternative Bioequivalence Approaches for Topical Dermatological Drug Products

Innovations in Dermatological Sciences Conference FDA Regulatory Updates for Topical Drug Products

Tannaz Ramezanli, PharmD, PhD

Pharmacologist ORS/OGD CDER | U.S. FDA September 28/29, 2021

Disclaimer

This presentation reflects the views of the author and should not be construed to represent FDA's views or policies.

Complexity of Topical Products

- FDA
- Topical drug products are typically complex, often in multiple ways (e.g., complex route of administration, complex dosage form)
- As the complexity of a <u>formulation</u>, <u>dosage form</u>, <u>drug</u> <u>product</u>, <u>site of action and/or mechanism of action</u> increases so do the potential failure modes for bioequivalence (BE) and therapeutic equivalence (TE)
- With a sufficient product and process understanding, relevant complexities can be identified and addressed systematically for the generic drug product

Evaluation of BE for Topical Products

- <u>A Modular Framework for Characterization-Based BE</u>
 - No Difference in the formulation compared to the reference product (e.g., Qualitative (Q1) and Quantitative (Q2) sameness)
 - Physical and Structural (Q3) characterization
 - IVRT (In Vitro Release Test)
 - **IVPT** (In Vitro Permeation Test)
- Evidence to Support a Demonstration of BE
 - In Vivo Pharmacokinetic (PK) Studies
 - In Vivo Pharmacodynamic (e.g., Vasoconstrictor) Studies
 - In Vivo Comparative Clinical Endpoint BE Studies
 - In Silico Quantitative Methods, Modeling and Simulation

Cutaneous PK Techniques

- Techniques explored in the past
 - In Vivo Stratum Corneum Sampling Studies
 - Tapestripping "Dermatopharmacokinetics" (DPK)
- Techniques that are currently being developed/utilized
 - In Vitro Cutaneous Pharmacokinetic Studies
 - In Vitro Permeation Testing (IVPT)
 - In Vivo Cutaneous Pharmacokinetic Studies
 - Dermal Open Flow Microperfusion (dOFM)
 - Dermal Microdialysis (dMD)
- Techniques that we hope to develop
 - In Vivo Cutaneous Pharmacokinetic Studies
 - Epidermal and/or Dermal Pharmacokinetic Tomography, e.g., Raman-based methods

Cutaneous PK-Based Approaches

• dMD and dOFM directly measure the in vivo rate and extent of drug bioavailability at/near the site of action in the skin.

www.fda.gov Image provided courtesy of Dr. Frank Sinner, Joanneum Research Skin Pharmacol Physiol 2011;24:44–53 6

Pivotal BE Study for Acyclovir Cream

www.fda.gov

Clinical pharmacokinetics vol. 56,1 (2017): 91-98

FDA

BE Study for Lidocaine Prilocaine Cream

R: EMLA[®] (lidocaine; prilocaine) topical cream, 2.5%; 2.5 %
T_{generic} : generic lidocaine; prilocaine cream, 2.5%; 2.5%
T_{non-equ}: Oraqix[®] (lidocaine; prilocaine) dental gel, 2.5%; 2.5%

	PK endpoint	Drug	95% upper confidence bound	BE - criterion satisfied	Result
T _{gen} vs. R ₁	AUC ₀₋₁₂	lidocaine	-0.053	Yes	The generic cream is bioequivalent to the reference cream.
	C _{MAX}		-0.055	Yes	
	AUC ₀₋₁₂	prilocaine	-0.051	Yes	
	C _{MAX}		-0.043	Yes	
T _{non-equ} vs. R ₂	AUC ₀₋₁₂	lidocaine	0.330	No	The gel is not bioequivalent to the reference cream.
	C _{MAX}		0.623	No	
	AUC ₀₋₁₂	prilocaine	0.703	No	
	C _{MAX}		1.174	No	

Cutaneous PK of Metronidazole Products

- ▶ MetroGel[®] topical gel, 0.75% "Brand Gel"
- Metronidazole topical gel, 0.75% "Generic Gel"
- MetroCream[®] topical cream, 0.75% "Brand Cream"
- Metronidazole topical cream, 0.75% "Generic Cream"

www.fda.gov

Data/images provided courtesy of Dr. Grazia Stagni, Long Island University

FDA Austrian Reference - - Zovirax (US) 4h 4 hours 24 hours U.S. Reference Zovirax (US) 24h **U.K. Reference (tube)** AUC Intensity (PG/amide I) [a.u.] Intensity (PG/Amide I) [a.u.] U.K. Reference (pump) (PG/Amide I) [a.u.] Generic 2 (Austria) 4 hr 0 4 8 12 16 20 24 28 32 36 40 0 20 20 Depth [µm] Depth [µm] Depth [µm] Confocal Raman microscopy 18 **IVPT** ACV (µg/cm²) 16 14 12 Ħ 10 8 6 ā 2 3 5 6 7 4 Depth [µm] 4 500 1000 1500 Raman shift [1/cm] 2 0 0 12 4

www.fda.gov

Data/images provided courtesy of Prof. Michael Roberts, UniSA

3 donors, 3 replicates

Time (h)

48

Cutaneous PK: Non-Invasive Techniques

Summary

- Goal of the Generic Drug User Fee Amendments (GDUFA)-funded research program is to develop efficient BE approaches for complex generic drug products (including topical dermatological products).
- FDA is exploring cutaneous PK-based techniques to assess BE of topical drug products.
- Efficient in vivo dOFM and dMD methods have the potential to support a demonstration of BE when the proposed method is optimized and controlled to be adequately discriminating and reproducible.
- FDA has funded research studies to assess the feasibility of Confocal Raman Spectroscopy-based techniques for evaluation of cutaneous PK.

Acknowledgements

U.S. FDA

- Priyanka Ghosh, PhD
- Sam Raney, PhD
- Markham Luke, MD, PhD
- Eleftheria Tsakalozou, PhD
- Ying Jiang, PhD
- Robert Lionberger, PhD

Research Collaborators

Funding for research projects was made possible, in part, by the U.S. FDA through:

GDUFA Award U01FD004946

GDUFA Award U01FD005861

Dr. Frank Sinner, Joanneum Research

GDUFA Award U01FD006533

- **Dr. Richard Guy, University of Bath** GDUFA Award U01-FD005226
- Dr. Michael Roberts, University of South Australia GDUFA Award U01FD005862
- Dr. Grazia Stagni, Long Island University

