

In Vivo Dermal Microperfusion & Microdialysis Bioequivalence Approaches

SBIA 2020: Advancing Innovative Science in Generic Drug Development Workshop

Session 3: Future Directions, Emerging Technology, and Current Thinking on Alternative BE Approaches

Topic 2: Topical Dermatologic Products

Tannaz Ramezanli, PharmD, PhD

Pharmacologist

Division of Therapeutic Performance, Office of Research and Standards

Office of Generic Drugs | CDER | U.S. FDA

September 30, 2020

Disclaimer

This presentation reflects the views of the author and should not be construed to represent FDA's views or policies.

Learning Objectives

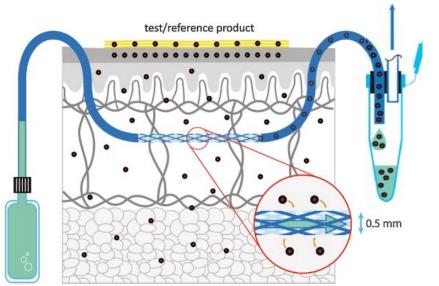
- Evaluate bioequivalence (BE) for topical dermatological drug products using in vivo pharmacokinetics (PK)-based approaches
- What are some advances in cutaneous PK methods by Generic Drug User Fee Amendments (GDUFA)-funded research?
- Design a BE study using in vivo cutaneous PK methods
 - Considerations related to method development/optimization
 - Considerations related to the pivotal BE study

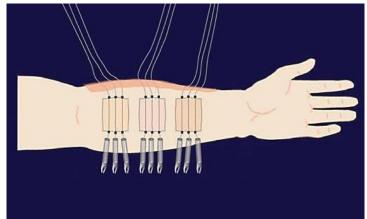
Local PK-Based Approaches

Methodologies of Interest

- In Vivo Cutaneous PK Studies
 - ✓ Dermal Open Flow Microperfusion (dOFM)
 - ✓ Dermal Microdialysis (dMD)
 - ✓ Epidermal and/or Dermal Pharmacokinetic Tomography

Methodologies Not of Interest


- In Vivo Cutaneous PK Studies
 - ✓ Tapestripping "Dermatopharmacokinetics" (DPK)


4

Cutaneous PK-Based Approaches

• dMD and dOFM directly measure the in vivo rate and extent of drug bioavailability at/near the site of action in the skin.

Cutaneous PK-Based Approaches

Traditional limitations and challenges

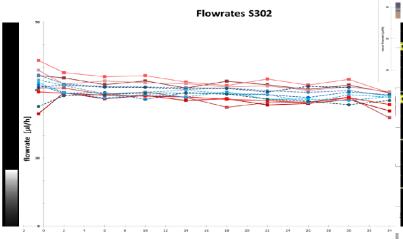
- Limited utility for certain classes of drugs
- High variability in the data
- Dermal drug concentrations too low to quantify
- Immobilization of study participants while connected to pumps and tubing
- Study durations too brief (e.g., 4-5h) for adequate comparison of the products
- Establishing acceptance criteria for BE

GDUFA-Funded Research Awards

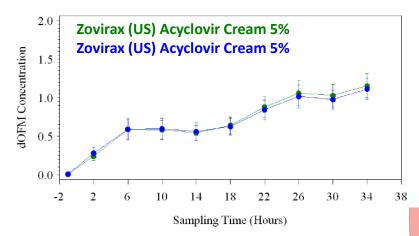
Novel methodologies (dOFM and dMD) to assess the BE of topical dermatological drug products:

- Joanneum Research
 - U01FD004946
 - U01FD005861
- Long Island University (LIU)
 - U01FD005862
 - U01FD006930

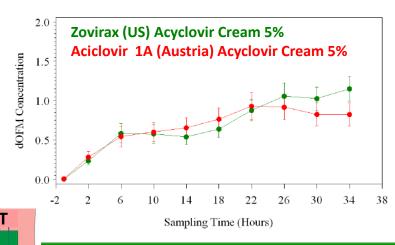
Cutaneous PK Studies With dOFM


Testing Positive and Negative Controls for BE

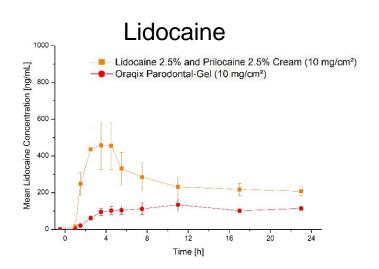
Study Controls

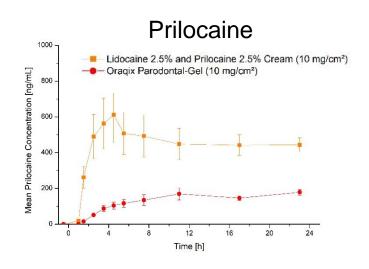


- Application site: controlled by application template
- Probe depth: monitored by ultrasound
- Barrier integrity test: transepidermal water loss (TEWL)
- Local blood flow
- Flow rates



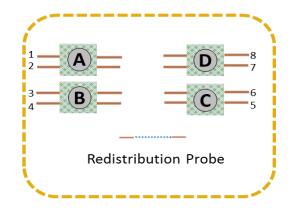
Pivotal BE Study for Acyclovir Cream


Outcome variable	CI _{90%}	BE-limits	BE
log(AUC _{0-36h})	[-0.148 ; 0.162] or [86.2 % ; 117.5 %]	[-0.223 ; 0.223] or [80% ; 125%]	passed
log(C _{max})	[-0.155 ; 0.190] or [85.7 % ; 120.9%]		passed

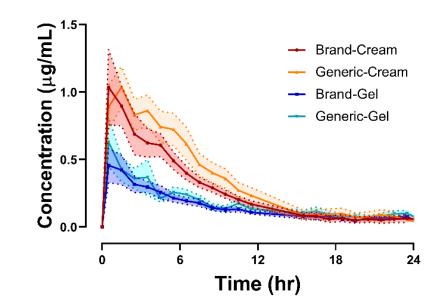


Outcome variable	CI _{90%}	BE-limits	BE
log(AUC _{0-36h})	[-0.369 ; 0.050] or [69.1 % ; 105.2 %]	[-0.223 ; 0.223]	x Failed
log(C _{max})	[-0.498 ; 0.022] or [60.8 % ; 102.2%]	or [80% ; 125%]	x Failed

Pilot BE Study for EMLA® vs Oraqix®



BE-Results – EMLA® (lidocaine;prilocaine) topical cream, 2.5:2.5% versus Oraqix® (lidocaine;prilocaine) dental gel, 2.5:2.5%


Drug	PK endpoint	Estimate	Lower Limit	Upper Limit	BE-evaluations
Lidocaine	AUC ₀₋₂₄	2.00	1.51	2.65	Not BE
	C_MAX	2.79	1.75	3.21	Not BE
Prilocaine	AUC ₀₋₂₄	2.37	2.14	3.63	Not BE
	C_MAX	2.75	2.15	3.51	Not BE

Cutaneous PK of Metronidazole Products

- MetroGel® topical gel, 0.75% "Brand Gel"
- Metronidazole topical gel, 0.75% "Generic Gel"
- MetroCream® topical cream, 0.75% "Brand Cream"
- Metronidazole topical cream, 0.75% "Generic Cream"

Average dermal concentration profiles using **dMD**, (mean \pm SEM, n=7), in rabbits

PK-Based Methods for Topical BE

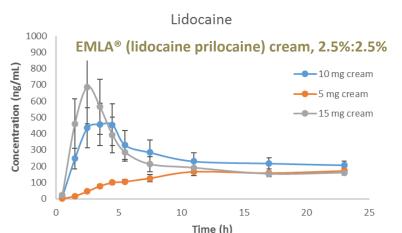
- Alternative BE approaches to comparative clinical endpoint BE studies may be possible by
 - <u>Efficient</u> In Vitro BE methods (characterization-based approaches)

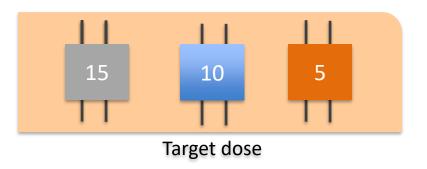
Particularly for prospective generic products which have 'No Difference' in components (Q1), composition (Q2), or physical and structural characteristics (Q3) relative to the reference product.

<u>Efficient</u> In Vivo BE methods (cutaneous PK-based approaches)

Particularly for prospective generic products which have 'Similar' components (Q1), composition (Q2), or physical and structural characteristics (Q3) relative to the reference product.

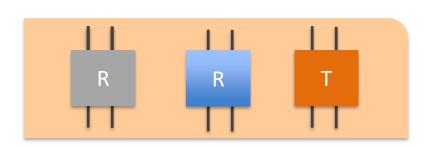
BE Studies Using dMD/dOFM

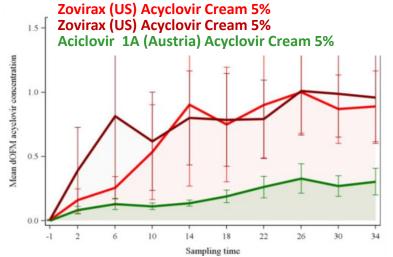



- Study Controls
- Method Development/Optimization
- Pilot Study
- Pivotal Study

Considerations for the study design: dose selection

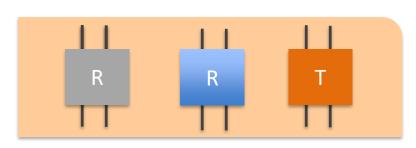
 The sampling technique should demonstrate changes in the dermal bioavailability for <u>different dose amounts</u>.

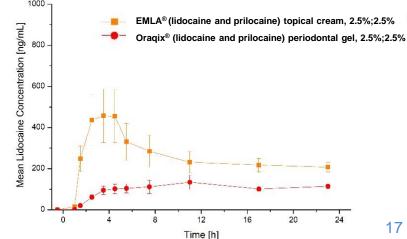




Considerations for the study design:

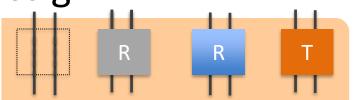
 The sampling technique should demonstrate changes in the dermal bioavailability by <u>inclusion of positive and negative</u> controls for BE.

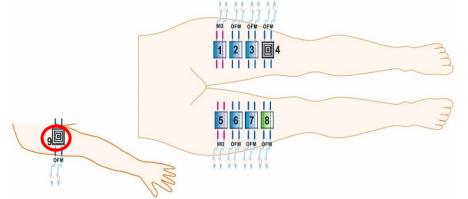

Data provided courtesy of Dr. Frank Sinner, Joanneum Research

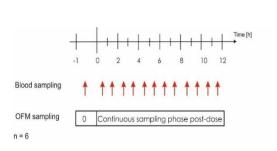


Considerations for the study design:

The sampling technique should demonstrate changes in the dermal bioavailability by inclusion of positive and negative controls for BE.

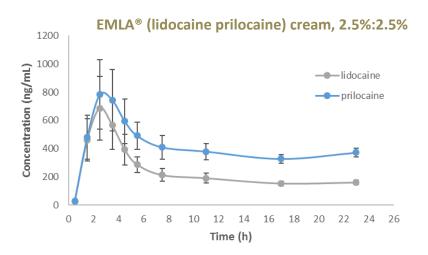

Data provided courtesy of Dr. Frank Sinner, Joanneum Research

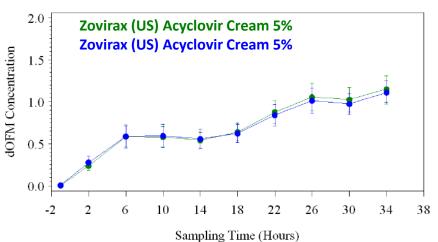



Considerations for the study design:

Lateral diffusion

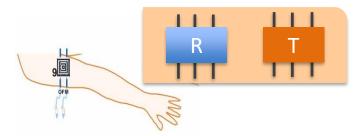
Systemic absorption and systemic redistribution





Considerations for the study design:

Dose duration and sampling duration



BE Study Design Considerations

- Number of test and reference sites per subject
- Number of replicate probes per application site
- Non-dosed sites to assess lateral diffusion and/or systemic redistribution
- Duration of the study

Conclusions

- FDA is exploring cutaneous PK-based techniques to assess BE of topical drug products.
- Efficient in vivo dOFM and dMD methods have the potential to support a demonstration of BE when the proposed method is optimized and controlled to be adequately discriminating and reproducible.
- Efficient in vivo dOFM and dMD based BE studies may be particularly useful for prospective generic products which have 'similar' components (Q1), composition (Q2), or physical and structural characteristics (Q3) relative to the reference product.
- The results from the method development/optimization and pilot studies may be suitable to support a demonstration that a dOFM study in human subjects (at the selected dose) would be able to differentiate changes/differences in the rate and extent to which drugs become available in the dermis.
- To propose this alternative BE approach for a topical product, you can submit a pre-ANDA product development meeting request to the Office of Generic Drugs.

Acknowledgements

U.S. FDA

- Sam Raney, PhD
- Markham Luke, MD, PhD
- Elena Rantou, PhD
- Priyanka Ghosh, PhD
- Eleftheria Tsakalozou, PhD
- Ying Jiang, PhD
- Robert Lionberger, PhD

Research Collaborators

Funding for research projects was made possible, in part, by the U.S. FDA through:

GDUFA Award U01FD004946

Dr. Frank Sinner, Joanneum Research

GDUFA Award U01FD005861

Dr. Frank Sinner, Joanneum Research

GDUFA Award U01FD005862

Dr. Grazia Stagni, LIU

Challenge Question

Which of the following statements is **NOT** true about developing an in vivo dOFM/dMD PK- based method?

The <u>method development/optimization</u> study(ies) are expected:

- A. To show that an appropriate dose is selected for the pivotal BE study
- B. To support that the proposed method is able to discriminate an increase in the rate and extent to which a topical product may deliver a drug into the skin
- C. To be adequately powered
- D. To support that an appropriate dose/study duration is selected for the pivotal BE study

Challenge Question

Which of the following statements is **NOT** true about developing an in vivo dOFM/dMD PK- based method?

The <u>method development/optimization</u> study(ies) are expected:

- A. To show that an appropriate dose is selected for the pivotal BE study
- B. To support that the proposed method is able to discriminate an increase in the rate and extent to which a topical product may deliver a drug into the skin
- C. To be adequately powered
- D. To support that an appropriate dose/study duration is selected for the pivotal BE study

