

Product Development Considerations for Generic Transdermal Delivery Systems (TDS)

Complex Generic Drug Product Development Workshop
Session 5: Complex Route of Delivery/Dosage Forms
Topical (Dermatological) and Transdermal
September 13, 2018

Tannaz Ramezanli, Pharm.D., Ph.D.

U.S. Food and Drug Administration, Office of Generic Drugs
Office of Research and Standards,
Division of Therapeutic Performance

Disclaimer

This presentation reflects the views of the author and should not be construed to represent FDA's views or policies.

Equivalence for Generics

- Pharmaceutical Equivalence (PE)
 - Same active ingredient(s) and
 - Same dosage form and
 - Same route of administration and
 - Same strength
- Bioequivalence (BE)
 - No significant differences in rate and extent of absorption at site of action
- Therapeutic Equivalence (TE) of Generic Products
 - PE + BE
 - Expected to have the same clinical effect and safety profile under labeled use

PE for TDS Products

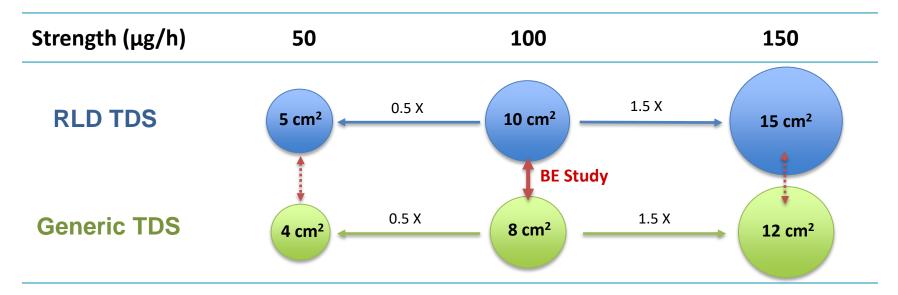
- For TDS products, strength is defined by the nominal drug delivery rate, not drug load, and adjusted by size
- So, compared to the Reference Listed Drug (RLD) TDS product, a generic TDS of the same strength may have a
 - Different drug load
 - Different formulation composition
 - Different residual drug excess
 - Different product size and/or shape
 - Different heat effects due to different drug load and design

Failure Modes for BE/TE

- Failure modes for TE may arise from:
 - Differences in "inactive" ingredients?
 - Differences in dosage form design?
 - Differences in the drug load or size of the TDS?
- These differences may collectively affect
 - Generic TDS adhesion to skin
 - Generic TDS dose proportionality
 - Generic TDS heat effects

Shape Considerations for TDS

A generic TDS may have a different formulation, size and/or shape; these differences may affect the TDS adhesion to skin.



Corners may be more prone to lifting, and a long rectangular TDS may experience different torsional strains depending upon the anatomical site and the orientation in which it is applied.

Study	Test	Reference	Non-Inferior Adhesion
А			May Fail
В			May Pass

Proportional Similarity of TDS

"The proportional similarity of the formulation across all strengths" means:

- Identical amounts of ingredients per unit of active surface area for all strengths.
- Identical ratios of the active surface areas for the Test and RLD TDS.

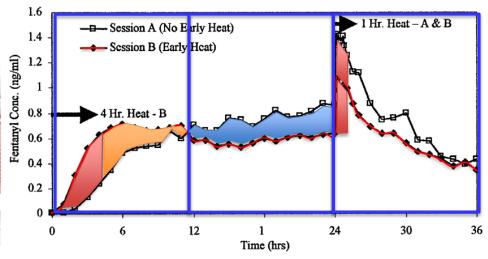
Proportionality of Exelon® TDS

- Case Study: Exelon[®] (rivastigmine) TDS
 - The ratios of <u>labeled (nominal)</u> strengths are not proportional to the ratios of <u>actual</u> active surface areas or of <u>actual</u> drug load across all strengths.

	RLD	NDA 022083	Nominal Strength
Exelon [®] TDS	Area (cm²)	Drug Load (mg)	(mg/24h)
High Strength	15	27	13.3
Mid Strength	10	18	9.5
Low Strength	5	9	4.6
Ratio of High/Mid	1.500	1.500	1.400
Ratio of Low/Mid	0.500	0.500	0.484

 The "proportional similarity of the formulation across all strengths" should be based on the actual active surface areas of the Exelon® TDS.

Impact of Heat on TDS Performance

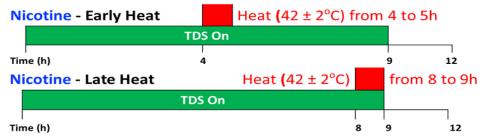

Considerations for various scenarios of heat exposure:

- Early heat
- Late heat

Continuous heat

FIGURE SOURCES: http://www.clinicaladvisor.com/termsandconditions/ (Authorized non-commercial use) Inset image from the Ortho Evra® Prescribing Information (package insert)

Figure 1. Mean serum fentanyl concentrations after transdermal fentanyl delivery with and without heat (n = 10).

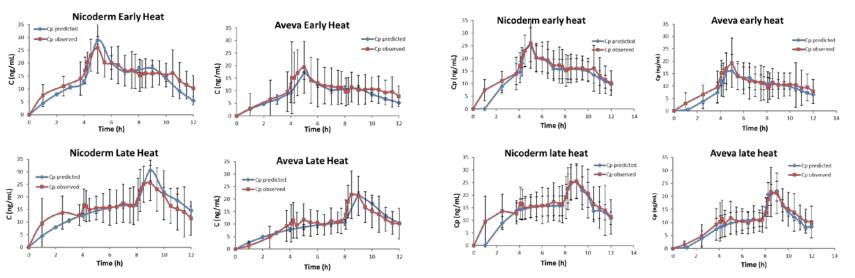

Study of Nicotine TDS Heat Effects

Two different (pharmaceutically equivalent) nicotine TDS products.

Nicotine TDDS 14 mg/24h	Patch size (cm²)	Rate/Area (µg/h/cm²)	Adhesive type	Other inactive ingredients
Nicoderm CQ®	15.75	37	Polyisobutylene	Ethylene vinyl acetate-copolymer, polyethylene between pigmented and clear polyester backing
Aveva	20	29	Polyacrylate/Silicone	Polyester backing

Two different study designs for heat exposure to nicotine TDS products

- Harmonized in vivo and in vitro permeation test (IVPT) study designs
- Evaluate whether IVPT results could predict the in vivo results


In Vitro – In Vivo Relationship

IVPT results were reasonably predictive of Nicotine TDS heat effects in vivo

Approach I (prediction based upon in vitro data only)

Approach II (including an in vivo-derived heat factor)

Conclusions

- TDS products are complex, and can exhibit unique failure modes for BE/TE.
- Generic TDS products must be therapeutically equivalent for patients, despite any allowable design or formulation differences compared to the RLD TDS.
- Therefore, FDA's BE standards for TDS products comprehensively evaluate potential failure modes for BE/TE to ensure that patients have access to high quality generic TDS.

Acknowledgements

OGD

- Sam Raney, PhD
- Priyanka Ghosh, PhD
- Bryan Newman, PhD
- Kaushalkumar Dave, PhD
- Markham Luke, MD, PhD
- Robert Lionberger, PhD
- Carol Kim, PhD

GDUFA Research Collaborators

GDUFA Award U01FD00**4955**

Audra Stinchcomb, PhD
 University of Maryland, Baltimore

<u>OPQ</u>

- Caroline Strasinger, PhD
- Bob Berendt, PhD
- Bhagwant Rege, PhD
- Bing Cai, PhD

