

Characterization and Comparative Evaluation Strategies to Demonstrate Complex Excipient Sameness Complex Generic Drug product Development Workshop Session 3: Complex Formulations/Dosage Forms September 25, 2019

> Bin Qin, PhD. Division of Therapeutic Performance, Office of Research and Standards OGD | CDER | U.S. FDA

Disclaimer

This presentation reflects the views of the author and should not be construed to represent FDA's views or policies

Outline

- Introduction: challenge of demonstrating sameness of complex excipient
- Research update-1: characterization of glucose star poly (D,L lactide-co-glycolide) (PLGA) polymer
- Research update-2: analytical techniques for mixed PLGA polymers

Challenges of demonstrating sameness of complex excipients

- Generic parenteral products generally need to establish Q1 and Q2 sameness per regulations (21 CFR 314.94(a)(9)(iii))
- Challenges:
 - Complexity in structure and composition
 - Non-compendial excipient
 - May be difficult to purify or analyze
 - Excipient in finished drug product may not be the same as starting raw material

PLGA copolymers

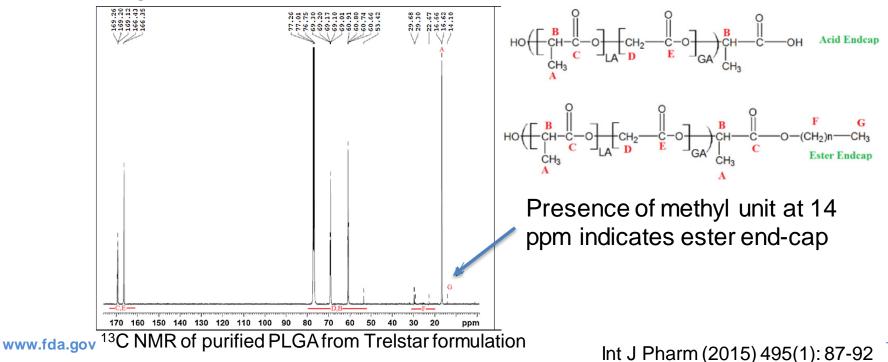
- PLGAs are biodegradable random copolymers
- PLGA polymers have been used in ~20 long acting injectable products as the rate controlling excipient
 - Dosage form: microspheres, in situ forming gel, solid implant
- Biodegradation depends on multiple factors:
 - e.g., Polymer properties, manufacture method, exposure to water

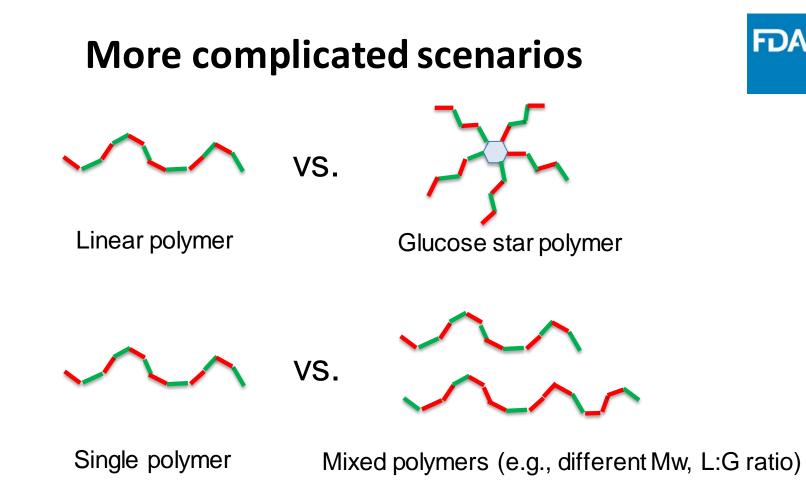
FDA **Characteristics of PLGA polymers** Molecular weight (Mw) and Mw distribution End-cap G G G G G G COOH (acid or ester) **Blockiness** Ratio of lactide to glycolide (L:G ratio)

Other characteristics include inherent viscosity, glass transition temperature, crystallinity, polymer structure/shape

A protocol for assay of poly(lactide-co-glycolide) in clinical products

RMACEUTI


CrossMark

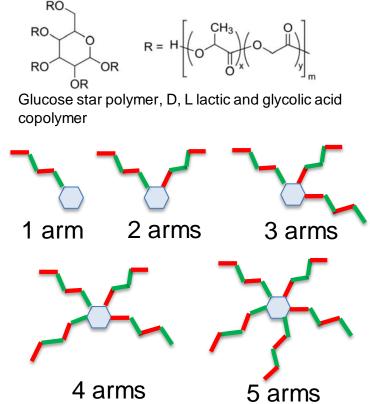

GDUFA research

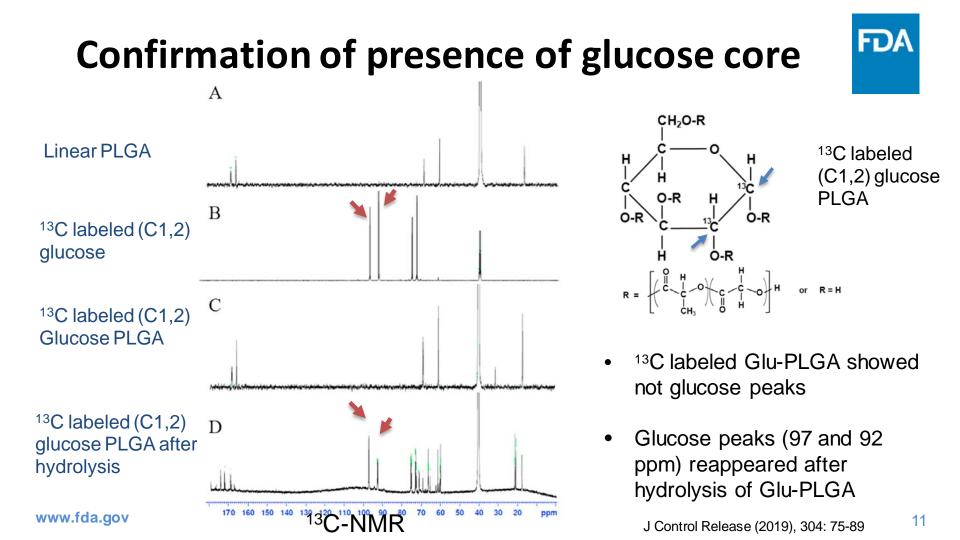
Grant U01FD05168

FDA

John Garner^a, Sarah Skidmore^a, Haesun Park^a, Kinam Park^{a,*}, Stephanie Choi^b, Yan Wang^b

www.fda.gov


GDUFA research program on PLGA characterization

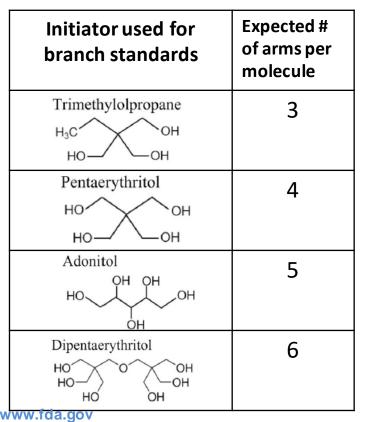


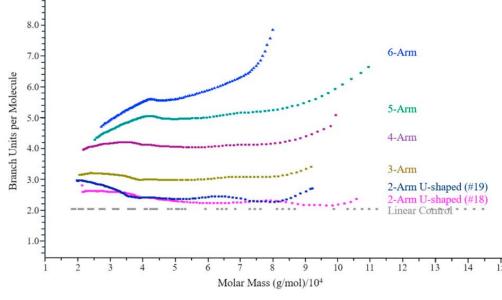
- Development of analysis technique for structural characterization for star-shaped polyesters used for drug delivery
 - Awarded to Akina, Inc. (HHSF223201710123C)
- Advanced analytical techniques for mixed polymer drug-delivery systems
 - Awarded to Akina, Inc. (HHSF223201610091C)

Glucose star PLGA polymer

- Glucose star polymer has been used in FDA approved product(s)
- Five sites for esterification in glucose can lead to variations in branch formation
- Molecular weight measured by GPC does not provide information on branch frequency (# of arm per molecule)

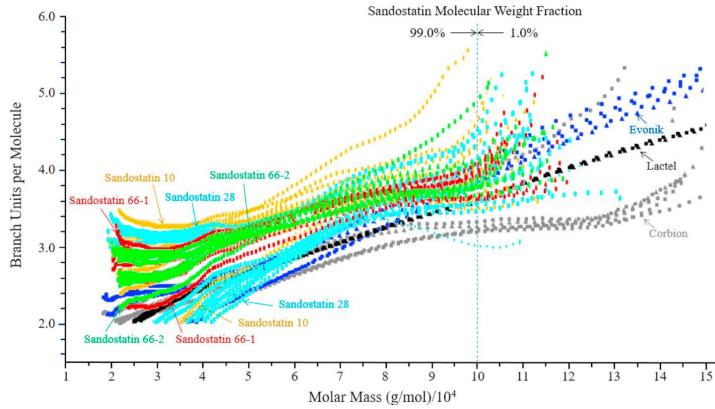
Conformation of presence of glucose core


Enzymatic glucose assay


Blank Glu-PLGA from Sandostatin LAR

Hadar et al, 2019 CRS Annual meeting poster

Branch analysis of in-house branch standards using GPC-4D


GPC-4D combines light scattering, viscometer, and refractive index detectors to characterize polymer size and structure

J Control Release (2019), 304: 75-89 13

Branch analysis of Sandostatin LAR polymer and commercial available star polymers

J Control Release (2019), 304: 75-89

4

Theoretical model used for branch analysis

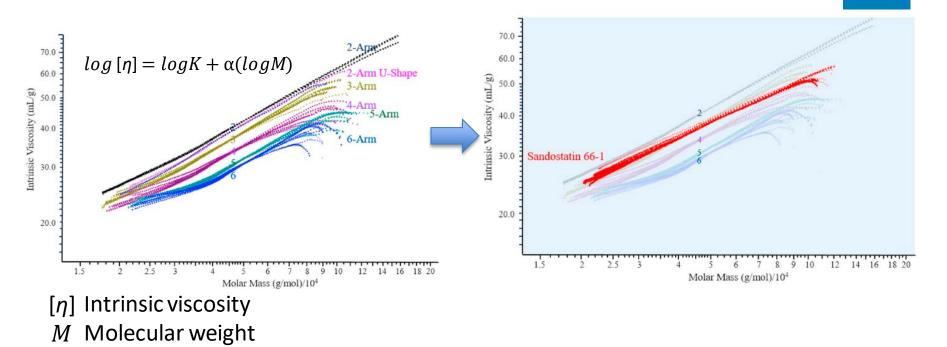
$$g = \left(\frac{R_{branched}^2}{R_{linear}^2}\right)_M$$
(1)

$$g' = \left(\frac{\left[\eta\right]_{branched}}{\left[\eta\right]_{linear}}\right)_{M}$$
(2)

$$g' = g^e \tag{3}$$

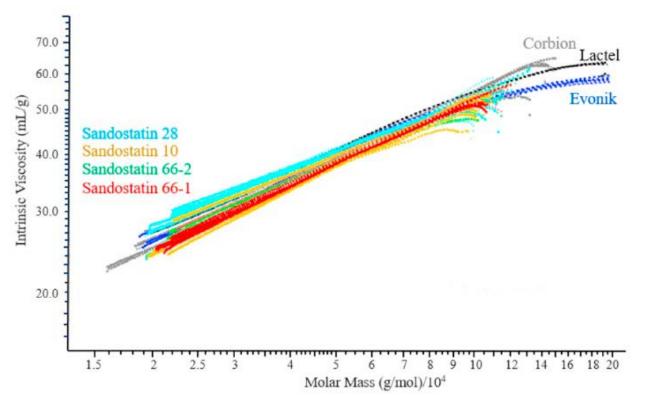
$$g = \frac{6B}{B^2 + 3B + 2}$$
(4)

g: branch ratio


 R^2 mean square radius of branched and linear polymers having the same molar mass (*M*)

[η]: intrinsic viscosity of linear and branched polymers, having the same molar mass.

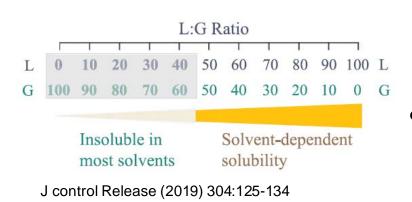
e: drainage factor


B: branch units per molecule

Mark-Houwink plots of branch standards

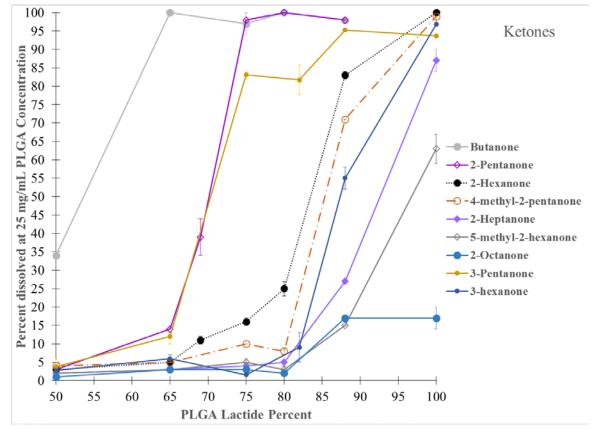
 With results of branch standards, the branch units of Glucose star polymer can be determined without theoretical model from the Mark-Houwink plots
Www.fda.gov

Mark-Houwink plots of glucose star polymers



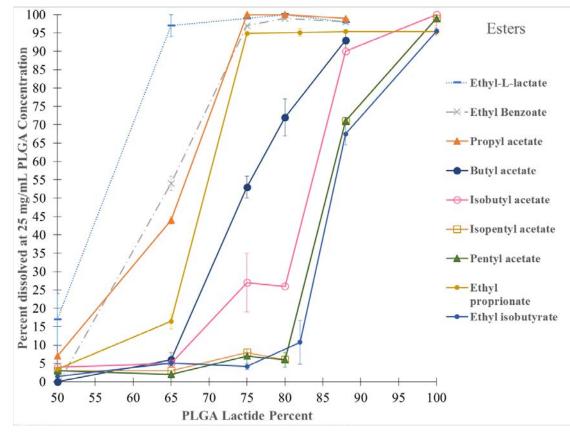
www.fda.gov

J Control Release (2019), 304: 75-89 17


Mixed polymers of different L:G ratio

- A drug product may contains more than one PLGA polymers for sustained release of drug
- PLGAs of different L:G ratio have different solubility in solvents
 - It is possible to separate PLGAs based on this property even if their molecular weight are the same

PLGA dissolution by L:G ratio in ketones



www.fda.gov

Garner et al. CRS Annual meeting poster, 2019

19

PLGA dissolution by L:G ratio in esters

www.fda.gov

Garner et al. CRS Annual meeting poster, 2019 20

Separation and analysis of PLGA in Trelstar

Table 1. Trelstar® Fraction Separation Analysis (Average ± STDEV, N=2 lots)					
Solvent (fraction)	Percent polymer (w/w%)	Lactide content (%L, NMR)	Mw (GPC-4D)	Mn (GPC-4D)	Rc (NMR)
Original Mixture	100%	76.9 ± 0.1	41,377 ± 135	31,475 ± 81	0.78 ± 0.01
Xylenes	6.0 ± 0.1	84.0 ± 0.1	13,063 ± 2695	8755 ± 4799	0.46 ± 0.16
Isopentyl acetate	15.8 ± 0.8	82.8 ± 0.1	24,653 ± 1316	$19,\!429\pm811$	0.48 ± 0.08
Toluene	25.5 ± 1.3	82.9 ± 0.1	47,790 ± 939	39,084± 2588	0.55 ± 0.12
Butyl acetate	12.6 ± 0.2	74.2 ± 0.2	26,592 ± 665	22,760 ± 99	0.81 ± 0.02
2-Pentanone	14.7 ± 0.2	72.5 ± 0.2	35,483 ± 264	29,658 ± 88	0.88 ± 0.001
Butanone	24.7 ± 0.7	70.8 ± 0.2	52,930 ± 640	45,267 ± 1467	0.89 ± 0.01
Butanone residual	0.6 ± 0.4	70.5 ± 0.6	NT*	NT*	NT*
* NT = Not Tested, too little quantity extracted to test.					

 Trelstar[®] 22.5 mg formulation was successfully separated into fractions based on lactide content of PLGA

Summary

- Comprehensive polymer characterization on test product and RLD products is recommended for establishing Q1/Q2 sameness of PLGA
- GDUFA research projects provided key knowledge addressing scientific gaps in PLGA polymer characterization

www.fda.gov