

Mechanistic modelling of dermal drug absorption using *Simcyp MPML MechDermA model* rationale behind model development, its shape and performance

N, Patel^a, S. Cristea^a, M. Jamei^a, F. Salem^a, <u>S. Polak^{a,b}</u>

^aSimcyp Limited (a Certara Company), Sheffield, S2 4SU, U.K. ^bFaculty of Pharmacy, Jagiellonian University Medical College, Poland

Typical Models Used to Describe Pharmacokinetics

Three type of models can be used to describe concentration time profiles (PK)

<u>Empirical</u> and <u>compartmental</u> models are fitted to observed data to explain the data whereas <u>physiological</u> models can be used for a priori prediction and then refine as data becomes available

PBPK Modelling is not new

\int	4	Blood Cir	culation		\sum	Clinical Pharmacology
Dose - No	A. Subcutis stc	Tissue E	oundaries 14 9 14		As Chemical inactivation "function" ctc.	Therapeutics Between the second secon
Local Symbol	Drug depot D	Blood + equivalent Blood vol B	Kidney etc elimination K	Tissues T	Tissue inactivation I	QUANTITATIVE MODELS
Amount Volume Concentration Perm. coeff	× V, ×/V, k;	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	U - - Ki	z z/V3 k2	3 	Torsten Teorell (1905–1992) The Father of Pharmacokinetics
Lelocity in Name of process	k ₁ = k ₁ /V ₁ neglected Resorption	-	ky = ky/Vz not existing Elimination	$h_3 = h_2' / V_3$ $h_2 = k_2' / V_2$ Tissue take up -11- output	K5 — Inactivation	
		F	G. 1			

Scheme of the Concept of Drug Distribution used in this paper. Instead the *injection* pictured in the figure, the administration of the drug depot can be made per os, per rectum, by inhalation, etc.

Advantage of PBPK: Separating systems & drug information

Syster Data	ns Tr De:	rial sign	Drug Data
	Co-administ Popul	ose ation route uency stered drugs ations	
	Mechanistic IVIVE	linked PBPK models	
	Prediction of drug PK (PD) in population of inte	rest
0		(Jamei <i>et al.,</i> DMPK, 200	09, Rostami-Hodjegan, CPT, 2012)

CERTARA

Citation: CPT Pharmacometrics Syst. Pharmacol. (2015) 00, 00; doi:10.1002/psp4.33 © 2015 ASCPT All rights reserved

PERSPECTIVE

Application of Physiologically Based Pharmacokinetic (PBPK) Modeling to Support Dose Selection: Report of an FDA Public Workshop on PBPK

C Wagner¹, P Zhao¹*, Y Pan², V Hsu¹, J Grillo¹, SM Huang¹ and V Sinha¹*

Citation: CPT Pharmacometrics Syst. Pharmacol. (2015) 00, 00; doi:10.1002/psp4.30 © 2015 ASCPT All rights reserved

ORIGINAL ARTICLE

Physiologically Based Models in Regulatory Submissions: Output From the ABPI/MHRA Forum on Physiologically Based Modeling and Simulation

T Shepard¹*, G Scott², S Cole¹, A Nordmark³ and F Bouzom⁴

Physiologically Based Pharmacokinetic Modeling in Drug Discovery and Development: A Pharmaceutical Industry Perspective

HM Jones¹, Y Chen², C Gibson³, T Heimbach⁴, N Parrott⁵, SA Peters⁶, J Snoeys⁷, VV Upreti⁸, M Zheng⁹ and SD Hall¹⁰

© Copyright 2016 Certara, L.P. All rights reserved.

Industry

EMA

FDA

Need for Dermal PBPK Models towards Virtual BE of Generic Products

PBPK Modelling in NDA Submissions

- Low utility in ANDA / Generic Drug Applications
 - PBPK models needed for complex products, topical and locally acting drugs
 - Improvements needed for BA/BE Assessment e.g. WS variability
 - GDUFA 7 grants for PBPK model development for non-oral drug delivery

Awarded up to 3 years FDA OGD grant in September 2014

'Development and validation of dermal PBPK modelling platform towards virtual bioequivalence assessment considering population variability'

The project aims to develop a physiologically-based dermal absorption and disposition model along with the supporting database of physiology and its variability for not only the healthy Caucasian volunteers but also special populations such as paediatric, geriatric, other races such as Asian and diseased populations

The new model will also take into account other mechanisms that play an important role in dermal absorption, such as skin surface pH, dermal hydration, skin appendages, binding to keratin, and the effect of permeability-modifying formulation ingredients and drug-physiology interactions

http://www.simcyp.com/News/2014/October/20141023 FDA Grant.htm?p=1

Goals

- Develop mechanistic dermal absorption model
- Ability to model and differentiate between formulations
- Support model with human physiology databases
 - Adult Caucasian (male & female)
 - Elderly Caucasian (male & female)
 - Ethnic (Asian or Japanese)
 - Pediatric (physiology changes from birth to teenage years)
 - Disease e.g. psoriasis or acne
- Better ways of *in vitro* to *in vivo* translation
- Translation of product performance from healthy to diseased, elderly or paediatric populations
- Identifications of CQA for product assessment

Current Progress – On track with many additional features

Milestono	Description	Proposed Duration	Actual Activity in
		(month of the project)	Year 2 Quarter 2
Aim 1	Updating the current healthy volunteer physiology	1-12	Completed
Aim 2	Incorporation of paediatric and geriatric groups and other ethnic and diseased populations	6-36	Ongoing
Aim 3	Addition of deep tissue compartment	1-6	Completed
Aim 4	Incorporation of hydration level of SC as part of the model	1-9	Completed
Aim 5	Collection of skin pH in different anatomical sites of body and its variability	1-9	Completed
Aim 6	Accounting the role of skin appendages on absorption	6-12	Completed
Aim 7	Empirical models to account for effect of formulation excipients on drug absorption	24-36	
Aim 8	Ability to model drug effect on local skin physiology	12-18	Completed Y2Q2
Aim 9	Providing pharmacodynamic models to simulate effect at local or systemic level	24-36	Started Early
Aim 10	Models validation	6-36	Ongoing, four case studies generated
Aim 11	Dissemination of the project outcomes	6-36	3 posters, 2 oral presentations, ms in preparation
CEDTA	Total	36 months	

© Copyright 2016 Certara, L.P. All rights reserved.

CERIARA

Advantage of PBPK: Separating systems & drug information

Me	echanistic IVIVE linked PBPK mode	Is

CERTARA

MPML MechDermA Model

[©] Copyright 2016 Certara, L.P. All rights reserved.

Close Collaboration and Transparency with FDA

• Shared the R code(s) for critical review and feedback from you

```
#Simcyp Dermal Gel formulation in vivo minimal PBPK model (multi-layer/multi-phase stratum corneum)
#2016/01/20
#the following section is to define R packages
library(deSolve)
require (lattice)
VDose = 30*40/10000 # volume of formulation appl ied i n mL (cm3)
dose <- 24 # calculated dose [mg]</pre>
A <- 30 # area of application (cm2)
AbsTemp = 302 # temp in kelvin (equaivalent of body temperature of 37C)
Boltz = 1.38*10^{-16} \# boltzman constant (g*cm2/s2*K)
visAq = 1 # viscosity of water in centipoise (cP)
visGel = 20000 # 2% aqueous gel of HEC in cP
vislip = 1000 # viscosity of SC lipid phase in cP (values reported in literature 30-100cP for human
visVE = 3 # viscosity of viable epidermis in cP (viscosity of intracellular fluid)
vissb = 32 # viscosity of sebum in cP (motwani 2001)
```

• The model with variability will be available in Simcyp V16 for wider use and validation – no coding skills required

Advantage of PBPK: Separating systems & drug information

Systems Data	Trial Design	

Meta-analysis of Systems Data

Intra-individual Variability

- Eight different locations
 - 1. Forehead
 - 2. Face (cheek)
 - 3. Volar Forearm
 - 4. Dorsal Forearm
 - 5. Upper Arm
 - 6. Lower Leg
 - 7. Thigh
 - 8. Back

- Various structural elements
 - 1. <u>Skin surface</u>
 - 2. Stratum corneum
 - 3. Viable epidermis
 - 4. Dermis
 - 5. Hair

- Various parameters
 - 1. <u>Skin temperature</u>
 - 2. Skin surface pH

- Various parameters:
 - Skin surface
 - ✓ Skin temperature model

15 AbsTemp = 302 # temp in kelvin (equaivalent of body temperature of 37C)

```
#Diffusion coefficient
34
     MolVol = MW/((Density) *6.023*10^23) # calculated molecular volu
35
     MolRad = (3*MolVol/(4*pi))^(1/3) # calculation of molecular rad:
36
     Dw = (3600*100*AbsTemp*Boltz)/(6*pi*visAq*MolRad) # Diff coeff :
37
     Dgel = (3600*100*AbsTemp*Boltz)/(6*pi*visGel*MolRad) #9.36*(10*
38
     Dlip = (3600*100*AbsTemp*Boltz)/(6*pi*vislip*MolRad) # 1.8*(10^-
39
     Dve = (3600*100*AbsTemp*Boltz)/(6*pi*visVE*MolRad) #3600 * 7.1
40
     Dsb = (3600*100*AbsTemp*Boltz)/(6*pi*vissb*MolRad) # diffusion (
41
     Dd = Dve # diffusion coefficient in dermis (assumed to be equal
42
```


© Copyright 2016 Certara, L.P. All rights reserved.

- Various parameters:
 - Skin surface

✓ Skin temperature – reality (location)

Table 1

The neutral core and skin temperatures, Dubois surface areas, and weights of the body segments (Tanabe et al., 2002)

i	Body segments	Neutral skin temperature (°C)	Neutral core temperature (°C)	Dubois surface area (m ²)	Weight (kg)
1	Left foot	33.9	35.1	0.056	0.480
2	Right foot	33.9	35.1	0.056	0.480
3	Left leg	33.4	35.6	0.112	3.343
4	Right leg	33.4	35.6	0.112	3.343
5	Left thigh	33.8	35.8	0.209	7.013
6	Right thigh	33.8	35.8	0.209	7.013
7	Pelvis	33.4	36.3	0.221	17.57
8	Head	35.6	36.9	0.140	4.020
9	Left hand	35.2	35.4	0.050	0.335
10	Right hand	35.2	35.4	0.050	0.335
11	Left arm	34.6	35.5	0.063	1.373
12	Right arm	34.6	35.5	0.063	1.373
13	Left shoulder	33.4	35.8	0.096	2.163
14	Right	33.4	35.8	0.096	2.163
	shoulder				
15	Chest	33.6	36.5	0.175	12.40
16	Back	33.2	36.5	0.161	11.03
	Whole body			1.87	74

- Various parameters:
 - Skin surface

✓ Skin temperature – reality (environment)

© Copyright 2016 Certara, L.P. All rights reserved.

- Various parameters:
 - Skin surface
 - ✓ Skin temperature <u>final value for the first version</u>
 - user modifiable in GUI
 - average value for all locations (32^oC 305K)
 - possibly expanded in the next version to account for intra- and inter-individual variability

Intra-individual Variability

- Eight different locations
 - 1. Forehead
 - 2. Face (cheek)
 - 3. Volar Forearm
 - 4. Dorsal Forearm
 - 5. Upper Arm
 - 6. Lower Leg
 - 7. Thigh
 - 8. Back

- Various structural elements
 - 1. <u>Skin surface</u>
 - 2. Stratum corneum
 - 3. Viable epidermis
 - 4. Dermis
 - 5. Hair

- Various parameters
 - 1. Skin temperature
 - 2. <u>Skin surface pH</u>

- Various parameters:
 - Skin surface
 - ✓ Skin surface pH model

31 fni <- 0.002 # fraction of drug non-ionised at skin surface pH,

- Various parameters:
 - Skin surface
 - ✓ Skin surface pH reality (location)

Fig. 4. Skin surface pH values. The skin surface pH was measured with a pH-meter 905 at 15 different anatomical sites in 125 volunteers. The values are expressed in pH units as means \pm SD.

CERTARA

- Various parameters:
 - Skin surface
 - ✓ Skin surface pH final values for first version

		surface pH
Foreboad	av	4.9
Foreneau	CV	12%
Foregrm inner (volgr)	av	4.9
Forearni inner (volar)	CV	13%
Forearm outer (dorsal)	av	5
Forearm outer (dorsal)	CV	13%
Linner arm	av	5
Opper ann	CV	11%
Face (sheek)	av	5
Face (cheek)	CV	10%
l og (lower)	av	4.7
Leg (lower)	CV	11%
log (upporthigh)	av	5.4
Leg (upper=trigh)	CV	10%
Back	av	5
DdCK	CV	11%

- Various parameters:
 - Skin surface

✓ Skin surface pH – reality (gender, age)

TABLE 1. Mean skin surface pH, SD and CV for each person for left and right arm

Subject	Left arm	Left arm		Right arm			Total	
	Mean pH	SD	CV	Mean pH	SD	CV		
Male								
1	5.30	0.08	1.6	5.09	0.04	0.8	5.80	
2	5.86	0.10	1.7	5.91	0.12	2.0	(range 5.01-6.50)	
3	5.84	0.07	1.3	5.81	0.07	1.3		
4	6.08	0.18	3.0	6.34	0.09	1.4		
5	6.18	0.09	1.4	6.27	0.11	1.8		
6	5.65	0.19	3.4	5.71	0.14	2.4		
Mean value	5.81	0.32	5.5	5.79	0.39	6.7		
P value ¹							0.140	
Female								
1	5.24	0.09	1.6	5.36	0.10	1.9	5.54	
2	5.85	0.20	3.4	5.74	0.24	4.2	(range 4.32-6.59)	
3	4.49	0.10	2.3	4.58	0.10	2.2		
4	6.19	0.17	2.8	6.27	0.21	3.3		
5	5.88	0.09	1.5	5.78	0.20	3.5		
Mean value	5.53	0.62	11.3	5.55	0.59	10.54		
P value ¹							0.196	
P value ²							< 0.001	

CERTARA

- Various parameters:
 - Skin surface
 - ✓ Skin surface pH reality (environment)

Average pH of leg per day

Figure 1 Average leg pH: soap versus pH cleanser.

© Copyright 2016 Certara, L.P. All rights reserved.

Healthy North-European Caucasians - - influence of ageing on pH (linear regression)

pH = 0.00489 × AGE + 4.818

pH = 0.00459 × AGE + 4.725

pH = 0.00529 × AGE + 4.709

Dikstein 1984

pH = 0.0071 × AGE + 5.11

© Copyrig Age (eyteal.s) All rights reserved.

Schreml 2012

pH differences between males and females

- On average, the pH of females is about 0.5 units higher than in males
- The pH varies between individuals, genders and skin areas

Skin surface pH in elderly vs. adult skin

Skin area

Wilhelm et al.(1991) found that the pH in the forehead and ankle is higher in the elderly population

Pediatric Skin surface pH - ontogeny

Buttocks/Diaper area

Intra-individual Variability

- Eight different locations
 - 1. Forehead
 - 2. Face (cheek)
 - 3. Volar Forearm
 - 4. Dorsal Forearm
 - 5. Upper Arm
 - 6. Lower Leg
 - 7. Thigh
 - 8. Back

CERTAR

- Various structural elements
 - 1. Skin surface
 - 2. <u>Stratum corneum</u>
 - 3. Viable epidermis
 - 4. Dermis
 - 5. Hair

- Various parameters
 - 1. Number of layers
 - 2. Corneocyte pH
 - 3. Corneocyte size
 - 4. Fraction of p/w/l
 - 5. <u>Tortuosity</u>
 - 6. Lipids fluidity/th

Tortuosity and hydration expansion

unaryono or ano						
Figure	Donor, sex, age, site	$ au_{ge}$ Mean \pm SD (no. of determinations/image)				
1A	Donor #1, unspecified	3.3 ± 0.1 (4)				
1B	Donor #2, male, 72, back	4.0 ± 0.7 (4)				
1C	Donor #1, unspecified	3.9 ± 0.6 (4)				
1D	Donor #2, male, 72, back	3.0 ± 0.7 (5)				
1E	Donor #2, male, 72, back	4.4 ± 0.7 (5)				
Mean \pm SD		3.7 ± 0.7				

Table 2. Geometrical tortuosity, τ_g , of lipid pathway in unexpanded human stratum corneum (SC) for the images in Figure 1, calculated according to Equation 1 using $E_l = 1.11$.

Talreja 2001

(a) Lengths, Thicknesses, Angular Parameter φ , and Tortuosity Parameters

State of SC	L (µm)	<i>t</i> (µm)	<i>s</i> (μm)	φ (°)	τ	ω
Unswollen (partially hydrated)	30.00	0.80	0.091	20	9.66	0.20
Swollen (fully hydrated)	31.20	2.80	0.091	50	3.38	0.19

CERTARA

Intra-individual Variability

- Eight different locations
 - 1. Forehead
 - 2. Face (cheek)
 - 3. Volar Forearm
 - 4. Dorsal Forearm
 - 5. Upper Arm
 - 6. Lower Leg
 - 7. Thigh
 - 8. Back

CERTAR

- Various structural elements
 - 1. Skin surface
 - 2. <u>Stratum corneum</u>
 - 3. Viable epidermis
 - 4. Dermis
 - 5. Hair

- Various parameters
 - 1. Number of layers
 - 2. Corneocyte pH
 - 3. Corneocyte size
 - 4. Fraction of p/w/l
 - 5. Tortuosity
 - 6. Lipids fluidity/th

Various parameters:

Various parameters:

CERTAR

- Stratum corneum
 - ✓ Thickness (h)

methods comparison - 100 virtual individuals

Intra-individual Variability

- Eight different locations
 - 1. Forehead
 - 2. Face (cheek)
 - 3. Volar Forearm
 - 4. Dorsal Forearm
 - 5. Upper Arm
 - 6. Lower Leg
 - 7. Thigh
 - 8. Back

CERTAR

- Various structural elements
 - 1. Skin surface
 - 2. Stratum corneum
 - 3. Viable epidermis
 - 4. Dermis
 - 5. <u>Hair</u>

- Various parameters
 - 1. <u>Hair follicle</u> <u>diameter</u>
 - 2. <u>Hair shaft</u> <u>diameter</u>
 - 3. Hair follicle density
 - 4. Sebum₃₆fluidity

Hair follicle/sebum

Table I. Percentage mean (\pm SD) of follicular orifices on the skin surface in seven body sides

Skin area						
Forehead	Back	Thorax	Upper arm	Forearm	Thigh	Calf region
1.28 (\pm 0.24)	0.33 (± 0.15)	0.19 (± 0.08)	$0.21~(\pm~0.09)$	$0.09~(\pm~0.04)$	0.23 (± 0.12)	0.35 (± 0.25)

Sebum duct area/volume can be calculated

Advantage of PBPK: Separating systems & drug information

Trial Design	Drug Data

Drug Related Parameters

- Phys-chem
 - 1. MW
 - 2. Density
 - 3. LogP
 - 4. LogD
 - 5. рКа
- Protein binding and ionization
 - 1. fu_{sc}
 - 2. fni

• ADME parameters

© Copyright 2016 Certara, L.P. All rights reserved.

- 1. BP
- 2. fu
- 3. CL

4

CERTARA

Partition coefficients

K_{lip/w}

2. K_{vw}

3. K_{SC/VE}

....

- Diffusion coefficients
 - 1. D_w

1.

4.

- 2. D_{lip}
- 3. D_{ve}

. . . .

4.

Sebum D_{sb}/Peff_{sb} bottom up predicted OR QSAR

Physical Properties of Sebum				
Property	Forehead sebum (ref. 4)	Scalp sebum (ref. 5)		
Specific gravity	0.91 g/cm ³	0.90 g/cm^3 for three normal samples		
Surface tension	24.9 dyne/cm from 26.5 to 31°C	22.9 dyne/cm for six normal samples at 30°C		
Viscosity	0.55 poise at 38°C	0.32 poise at 35°C		
	1.00 poise at 26.5°C	0.82 poise at 25°C		
	Viscosity discontinuous at 30°C due to the separation of a precipitate in the sebum			
Freezing point	Sample started to freeze at 30°C and then solidified at 15°–17°C	15°−17°C		

Table I

Calculate diffusion coefficient, partition coefficient from QSAR and predict permeation process via sebum rather than steady-state Peff from QSAR

Advantage of PBPK: Separating systems & drug information

Trial Design	Drug Data
Dose Administration route Frequency Co-administered drugs Populations	R.

CERTARA

Formulation Data - Solution

	Dermal Dosing - Substrate	8	
	Place of application	Forearm •	
	Area of application (cm2)	1	
	Thickness of Applied Formulation Layer (cm)	0.2	
Consider fo	OK	Cancel	CV (%) 71
Fraction non-	ionised at skin surface fniskin surface	71.65037	
Solution Diffus	ion Coeff (cm²/h): 71.65037	Vehicle molar volume (mL/mol)	45 W
		Viscosity (centipoise):	1

• Can be used for clear gels and solutions with appropriate parameterisation of diffusion coefficient

• Emulsions, emulsion creams and gels with or without particles

Formulation Data – Suspension/Paste/Patch

Suspension / Paste	Vehicle molar volume (mL/n	nol) 45	When lock is applied	
Diffusion Coeff (cm²/h):	1.65037 Vehicle Viscosity (centipoi	ise): 1	when lock is applied	
Drug solubility in vehicle (mg/mL):	1			
Particle diameter (um):	1			
O Dermal Patch				
Empirical release rate				
0	Zero Order Release Rate (mg/h)	1		
0	First Order Release Rate Constant (1/h)	1		
0	Controlled Release (CR)			
Oiffusion based release	e kinetics			
		Vehicle	e molar volume (mL/mol)	45
	Diffusion Coeff (cm²/h): 🖰 71.65037	7 Vehic	e Viscosity (centipoise):	1
		Volur	ne fraction of polymer	45
CERTARA	© Copyright 2016 Certara P_All rights reserved		44	

Simcyp IVIVE: Translating in vitro permeability to clinical situations

Model Performance Verification in vitro – Three Beta-blockers

Evaluation of β-Blocker Gel and Effect of Dosing Volume for Topical Delivery

Zhang, Chantasart, and Li, JOURNAL OF PHARMACEUTICAL SCIENCES

β-Blocker	$\log K_{ m o/w}{}^a$	$\log K_{ m o/w}{}^b$	Gel pH	$f_{ m union}$	β-Blocker	Molecular Weight (g/mol)	pKa	$\log K_{\rm o/w}$
Propranolol	3.3	3.48 ± 0.02	7.4	0.0079	Propranolol	259.3	$9.5 \pm 1.2^a \\ 9.4^b \\ 9.2^c$	3.3^{a}
Betaxolol	2.8	2.80 ± 0.02	7.4	0.0108	Betaxolol	307.4		2.8^{b}
Timolol	2.1	1.79 ± 0.02	7.4	0.0153	Timolol	316.4		2.1^{c}

Table 2. Experimental Conditions Used in the Franz Cell Experiments of the $\beta\text{-Blockers}$

β-Blocker	Donor	Experimental	Dosing Volume
	Concentration	Condition	(mL)
Propranolol	4 mg/mL propranolol hydrochloride	Nonocclusive Occlusive	0.15 0.03, 0.07, 0.15, 0.5
Betaxolol	5 mg/mL betaxolol hydrochloride	Nonocclusive Occlusive	0.15 0.03, 0.07, 0.15
Timolol	5 mg/mL	Nonocclusive	0.15
	timolol maleate	Occlusive	0.03, 0.07, 0.15

Betaxolol Prediction for three doses

Betaxolol 0.15mL

Betaxolol 0.03mL

CERTAR

- Thickness of skin layers not reported
 - ✓ Assumed SC thickness 10um (Simcyp value for back is 9um)
 - ✓ Assumed VE thickness 100um (value typical for split-thickness skin)
- Hydration expansion of SC (2.5-fold)
- Tortuosity (2.5-fold) fitted parameter to match observations (but within the limits of reported value)

Propranolol Prediction for four doses

CERTARA

Timolol Prediction for three doses

- Thickness of skin layers not reported
 - ✓ Assumed SC thickness 10um (Simcyp value for back is 9um)
 - ✓ Assumed VE thickness 100um (value typical for split-thickness skin)
- Hydration expansion of SC (2.5-fold)
- Tortuosity (1.5-fold) fitted parameter to match observations (but within the limits of reported value)

CERTAR

Timolol – Matrix-type Patch formulation

Drug conc. in layers of SC changing with time

Drug conc. changing with depth of SC

- Able to simulate the transient phase and transition to steady-state diffusion
- 12-16 h to achieve steady state diffusion

Simulated plasma drug conc. overlaid with clinically observed data

Comparison of Observed and Predicted PK parameters and %prediction errors

Patel et al. 2015 GRC Dermal Barrier Conference

Diclofenac – solution gel vs. emulsion gel

Observed vs. Predicted drug concentration after solution gel application

- Predictions using as input physicochemical properties of the drug and formulation characteristics
- Tmax over-predicted for the solution gel
- Diffusion coefficients: QSAR predicted / Stokes Einstein equation

Parameter	Observed	Simulated
S/E Cmax ratio	1.54	1.63
S/E AUC ratio	2.07	1.62
F _{AUC}	4.5% (S); 2.8% (E)	3.3% (S); 2.2% (E)

S-solution gel; E-emulsion gel

Polak et al. 2015 GRC Dermal Barrier Conference

Figure 2. Erythromycin SC individual layers PK profiles.

Figure 4. MPML MechDermA skin stripping experiments Predictions vs. Observations

• The model produces outputs that can be validated with tape-stripping or biopsy data

Drug/Excipient effect on local blood flow and absorption

[1] Input (x)				
O Total Dose (mo)				
PK Compartment	Simcyp Lua Editor - Substrat	e: PD Basic 1 Functions	-0-	
1a 😳 effect compartment K 1b 😳 via summary paramet 2] Transform None 🔹 x Transfo	1 function odeBat 2 local DermisQO, 3 ConcDrmis = SC: 4 DermisQ = Derm: 5 6 return Derm: 7 end	Setup functions Step functions Simcyp set functions Simcyp get functions getIndiv getIndivTarget getIndivEnz/Transp Simcyp sampling functions	* * * *	1/(QD50,
3] Response Model		Simcyp feedback functions	•	feedbackIndivStomachpH feedbackDermisBloodFlow
Sigmoid Emax (Hill)			-	1

CERTARA

Blood Flow change impact: vasodilation

CERTARA

© Copyright 2016 Certara, L.P. All rights reserved.

Blood Flow change impact: vasoconstriction

Future Direction and Your Inputs

- Further validation of the approach for various drugs and different formulations is required to improve confidence in such approach
- Modelling of excipient effects is crucial for BE but very challenging to be studied in year 3
- Vehicle evaporation and its impact on drug solubility and flux to be studied from next quarter
- Inter-occasion variability for virtual BE no data available in public domain, any way to get access to hidden data?
- Many gaps in understanding of skin physiology and its variability new grants and how to apply, what to focus on???
- Disease (psoriasis) population many gaps in known physiology

Acknowledgement

- Simcyp
 - Sebastian Polak (PI)
 - Nikunj Patel
 - Sinziana Cristea
 - Farzaneh Salem
 - Rachel Rose
 - Khaled Abduljalil
 - Trevor Johnson
 - Felix Stader
 - Masoud Jamei
 - Amin Rostami-Hodjegan

- FDA
 - Susie Zhang
 - Sam Raney
 - Arjang Talatoff
 - Ho-pi Lin
 - Bryan Newman
 - Priyanka Ghosh
 - Jianghong Fan
 - Lucy Fang
 - Edwin Chow
 - Liang Zhao

Disclaimer: Funding for the work presented here was made possible, in part, by the Food and Drug Administration through grant 1U01FD005225-01, views expressed here by the authors of the work do not reflect the official policies of the Food and Drug Administration; nor does any mention of trade names, commercial practices, or organization imply endorsement by the United States Government.

Thank you

