

PBPK Modelling of Dermal Drug Absorption and Population Variability Simcyp MPML MechDermA model

N. Patel, F. Martins, S. Cristea, F. Salem, K. Abduljalil, M. Jamei, S. Polak (PI)

Typical Models Used to Describe Pharmacokinetics

Three type of models can be used to describe concentration time profiles (PK)

<u>Empirical</u> and <u>compartmental</u> models are fitted to observed data to explain the data whereas <u>physiological</u> models can be used for a priori prediction and then refine as data becomes available

Advantage of PBPK: Separating systems & drug information

System Data	ns Tr Des	ial sign	Drug Data
	Do Administra Frequ Co-adminis Popul	se ation route uency tered drugs ations	
	Mechanistic IVIVE I	inked PBPK models	
	Prediction of drug PK (PD) in population of inte	erest
0		(Jamei <i>et al.,</i> DMPK, 20	009, Rostami-Hodjegan, CPT, 2012)

CERTARA

Need for Dermal PBPK Models towards Virtual BE of Generic Products

PBPK Modelling in NDA Submissions

- Low utility in ANDA / Generic Drug Applications
 - PBPK models needed for complex products, topical and locally acting drugs
 - Improvements needed for BA/BE Assessment e.g. WS variability
 - GDUFA 7 grants for PBPK model development for non-oral drug delivery

Awarded up to 3 years FDA OGD grant in September 2014

'Development and validation of dermal PBPK modelling platform towards virtual bioequivalence assessment considering population variability'

The project aims to develop a physiologically-based dermal absorption and disposition model along with the supporting database of physiology and its variability for not only the healthy Caucasian volunteers but also special populations such as paediatric, geriatric, other races such as Asian and diseased populations

The new model will also take into account other mechanisms that play an important role in dermal absorption, such as skin surface pH, dermal hydration, skin appendages, binding to keratin, and the effect of permeability-modifying formulation ingredients and drug-physiology interactions

http://www.simcyp.com/News/2014/October/20141023 FDA Grant.htm?p=1

Goals

- Develop mechanistic dermal absorption model
- Ability to model and differentiate between formulations
- Support model with human physiology databases
 - Adult Caucasian (male & female)
 - Elderly Caucasian (male & female)
 - Ethnic (Asian or Japanese)
 - Paediatric (physiology changes from birth to teenage years)
 - Disease e.g. psoriasis or acne
- Better ways of *in vitro* to *in vivo* translation
- Translation of product performance from healthy to diseased, elderly or paediatric populations
- Identifications of CQA for product assessment

Advantage of PBPK: Separating systems & drug information

Syster Data	ns a	Trial Design	
		Dose Administration route Frequency Co-administered drugs Populations	
CERTARA		© Copyright 2016 Certara, L.P. All rights reserved.	7

© Copyright 2016 Certara, L.P. All rights reserved.

Meta-analysis of Systems Data

Intra-individual Variability

- Eight different locations
 - 1. Forehead
 - 2. Face (cheek)
 - 3. Volar Forearm
 - 4. Dorsal Forearm
 - 5. Upper Arm
 - 6. Lower Leg
 - 7. Thigh
 - 8. Back

- Various structural elements
 - 1. <u>Skin surface</u>
 - 2. Stratum corneum
 - 3. Viable epidermis
 - 4. Dermis
 - 5. Blood Flow

- Various parameters
 - 1. <u>Skin temperature</u>
 - 2. Skin surface pH
 - 3. # hair follicles
 - 4. Size of follicles

- Various parameters:
 - Skin surface

✓ Skin temperature – reality (location)

Table 1

The neutral core and skin temperatures, Dubois surface areas, and weights of the body segments (Tanabe et al., 2002)

i	Body segments	Neutral skin temperature (°C)	Neutral core temperature (°C)	Dubois surface area (m ²)	Weight (kg)
1	Left foot	33.9	35.1	0.056	0.480
2	Right foot	33.9	35.1	0.056	0.480
3	Left leg	33.4	35.6	0.112	3.343
4	Right leg	33.4	35.6	0.112	3.343
5	Left thigh	33.8	35.8	0.209	7.013
6	Right thigh	33.8	35.8	0.209	7.013
7	Pelvis	33.4	36.3	0.221	17.57
8	Head	35.6	36.9	0.140	4.020
9	Left hand	35.2	35.4	0.050	0.335
10	Right hand	35.2	35.4	0.050	0.335
11	Left arm	34.6	35.5	0.063	1.373
12	Right arm	34.6	35.5	0.063	1.373
13	Left shoulder	33.4	35.8	0.096	2.163
14	Right	33.4	35.8	0.096	2.163
	shoulder				
15	Chest	33.6	36.5	0.175	12.40
16	Back	33.2	36.5	0.161	11.03
	Whole body			1.87	74

- Various parameters:
 - Skin surface
 - ✓ Skin surface pH reality (location)

Fig. 4. Skin surface pH values. The skin surface pH was measured with a pH-meter 905 at 15 different anatomical sites in 125 volunteers. The values are expressed in pH units as means \pm SD.

CERTARA

Healthy North-European Caucasians - - influence of ageing on pH (linear regression)

pH = 0.00489 × AGE + 4.818

pH = 0.00459 × AGE + 4.725

CERTARA

pH = 0.00529 × AGE + 4.709

Dikstein 1984

pH = 0.0071 × AGE + 5.11

© Copyrig Age (eyeans) All rights reserved.

12

Schreml 2012

pH differences between males and females

- On average, the pH of females is about 0.5 units higher than in males
- The pH varies between individuals, genders and skin areas

Skin surface pH in elderly vs. adult skin

Skin area

Wilhelm et al. (1991) found that the pH in the forehead and ankle is higher in the elderly population

Hair follicle/sebum

Table I. Percentage mean (\pm SD) of follicular orifices on the skin surface in seven body sides

Skin area

Forehead	Back	Thorax	Upper arm	Forearm	Thigh	Calf region
1.28 (\pm 0.24)	0.33 (± 0.15)	0.19 (\pm 0.08)	0.21 (\pm 0.09)	0.09 (\pm 0.04)	0.23 (± 0.12)	0.35 (± 0.25)

Sebum duct area/volume can be calculated

© Copyright 2016 Certara, L.P. All rights reserved.

16

Otberg 2004

Intra-individual Variability

- Eight different locations
 - 1. Forehead
 - 2. Face (cheek)
 - 3. Volar Forearm
 - 4. Dorsal Forearm
 - 5. Upper Arm
 - 6. Lower Leg
 - 7. Thigh
 - 8. Back

CERTAR

- Various structural elements
 - 1. Skin surface
 - 2. <u>Stratum corneum</u>
 - 3. Viable epidermis
 - 4. Dermis
 - 5. Hair

- Various parameters
 - 1. Number of layers
 - 2. Corneocyte pH
 - 3. Corneocyte size
 - 4. Hydration level
 - 5. <u>Tortuosity</u>
 - 6. Lipids fluidity

Thicknesses – Top down or Bottom up or User-specified

Mean thickness (µm) and mean number of cell layers of the stratum corneum from the thigh of six human subjects

Holbrook & Oland 1974

CERTARA

 Table 1 Comparison of the number of cell layers of the SC at various anatomical locations

Location	Number of cell layers (mean ± SD)
Face	$9 \pm 2 \ (n = 84)$
Forehead	$9 \pm 1 \ (n = 8)$
Eyelid	$8 \pm 2 \ (n = 16)$
Cheek	$10 \pm 3 \ (n = 43)$
Nose	10 (n = 2)
Nasolabial fold	7(n=2)
Lip	10 (n = 2)
Ear	$7 \pm 2 \ (n = 8)$
Periauricular region	$10 \pm 3 \ (n = 3)$
Scalp	$12 \pm 2 \ (n = 12)$
Neck	$10 \pm 2 \ (n = 5)$
Trunk	$13 \pm 4 \ (n = 94)$
Shoulder	$13 \pm 2 \ (n = 3)$
Chest	$13 \pm 4 \ (n = 9)$
Back	$13 \pm 3 \ (n = 18)$
Abdomen	$14 \pm 4 \ (n = 44)$
Buttock	$12 \pm 4 \ (n = 20)$
Genital	$6 \pm 2 \ (n = 9)$
Extremities	$15 \pm 4 \ (n = 55)$
Extensor surface, upper arm	$13 \pm 4 \ (n = 13)$
Flexor surface, upper arm	14 (n = 2)
Flexor surface, forearm	$16 \pm 4 \ (n = 4)$
Thigh	$16 \pm 4 \ (n = 31)$
Flexor surface, leg	$18 \pm 5 \ (n = 5)$
Acral region	$47 \pm 24 \ (n = 42)$
Dorsum of the hand	$25 \pm 11 \ (n = 10)$
Dorsum of the foot	$30 \pm 6 \ (n = 7)$
Palm	$50 \pm 10 \ (n = 8)$
Sole	$55 \pm 14 \ (n = 12)$
Heel	$86 \pm 36 \ (n = 5)$

Ya-Xian 1999

Tortuosity and hydration expansion

Hydration depth profile - implementation to be decided

C. Volar forearm 80 Water content (mass-%) 7060 50 40 30 20102030 0 Depth (µm)

Locations

- Cheek
- Upper arm
- Volar forearm

Advantage of PBPK: Separating systems & drug information

Me	echanistic IVIVE linked PBPK mode	Is

CERTARA

MPML MechDermA Model

[©] Copyright 2016 Certara, L.P. All rights reserved.

Advantage of PBPK: Separating systems & drug information

rrial Design	Drug Data

Drug Related Parameters

- Phys-chem
 - 1. MW
 - 2. Density
 - 3. LogP
 - 4. LogD
 - 5. рКа
- Protein binding and ionization
 - 1. fu_{sc}
 - 2. fni

• ADME parameters

© Copyright 2016 Certara, L.P. All rights reserved.

- 1. BP
- 2. fu
- 3. CL

4

CERTARA

Partition coefficients

K_{vw}
 K_{SC/VE}

K_{lip/w}

1.

- Diffusion coefficients
 - 1. D_{veh}
 - 2. D_{lip}
 - 3. D_{ve}
 - 4.

Drug Related Parameters

Obtain from in vitro measurements or predict using QSAR models

Advantage of PBPK: Separating systems & drug information

Trial Design	Drug Data
Dose Administration route Frequency Co-administered drugs Populations	R.

CERTARA

Formulation Data - Solution

Dermal Dosing - Substrate		X
Place of application	Forearm •	
Area of application (cm2)	1	
Thickness of Applied Formulation Layer (cm)	0.2	
OK	Cancel	

Formulation Options and Parameters

ormulation pH is skin surfa	ace pH Formulation pH	6.5			CV (%) 30
Fraction non-ionised at sk	tin surface fni _{skin surface} 🦳	0.02505982			
Solution	Formulation Diffusion C	Coefficients (cm	1²/h)		
I	Diffusion Coeff in Vehic	cle			
	Method	Scheibel 1954	ļ. ·	•	
	Vehicle Viscosity (cP)		10000	Predicted Dveh (cm ² /h)	2.134354E
	Vehicle Molar Volume	(mL/mol)	18		
	Diffusion Coeff in Polyr	mer (Gel or Pat	ch Formulatior	ns)	
	Method	Mackie and M	leares 1955	•	
•	Volume Fraction of Poly	ymer	0.5	Predicted D _{poly} (cm ² /h)	2.371504E
	(Copy	right 2016 Certara	I P All rights reserv	ved	26

Formulation Data - Emulsion

- Diffusion of drug is modelled
- Oil droplets movement neglected
- During storage and application, drug distribution is assumed to be at the thermodynamic equilibrium

Yotsuyangi et al. 1973, JPS, 62(1), 41

Formulation Data – Suspension/Paste/Patch

Suspension / Paste			
Diffusion Coeff (cm ² /h)	0.02134354	Vehicle viscosity (centipos	e) 1
		Vehicle molar volume (mL/mo	18
Drug solubility in vehicle (mg/mL)	1		
Particle diameter (µm)	10		
Number of particles per cm ³ (N/mL)	1E+07		
Oermal Patch			
Empirical release rate			
Zero order release rate (mg/h)	1		
First order release rate constant (1/h)	0.1		
Controlled Release (CR)			
Diffusion based release kinetics			
Diffusion Coeff (cm ² /h)	2.371504E	-06 Vehicle molar volume (mL/mol)	18
		Vehicle viscosity (centipose)	1000
		Volume fraction of polymer	0.5

Case Study: Ibuprofen Formulations

- Drug Parameters predicted with QSAR
- Formulation pH assumed 6.5
- Viscosity assumed 10000 cP
- Liberation assumed instantaneous in Ointment
- No excipient effect modelled explicitly

CERTARA

Caffeine Case Study – Predicting Contribution of Hair Follicle

Clinical data and trial design from Liu et al. BJCP, 2011, 72, 768

- When simply hair follicles are closed, predictions were higher than clinical measurement
- With reduction in area of block around the hair follicle, we were able to predict clinical observation

Otberg et al. 2007

CERTARA

Simcyp IVIVE: Translating in vitro permeability to clinical situations

Model Performance Verification in vitro – Three Beta-blockers

Evaluation of β-Blocker Gel and Effect of Dosing Volume for Topical Delivery

Zhang, Chantasart, and Li, JOURNAL OF PHARMACEUTICAL SCIENCES

β-Blocker	$\log K_{ m o/w}{}^a$	$\log K_{ m o/w}{}^b$	Gel pH	$f_{ m union}$	β-Blocker	Molecular Weight (g/mol)	pKa	$\log K_{ m o/w}$
Propranolol Betaxolol Timolol	$3.3 \\ 2.8 \\ 2.1$	3.48 ± 0.02 2.80 ± 0.02 1.79 ± 0.02	7.4 7.4 7.4	$0.0079 \\ 0.0108 \\ 0.0153$	Propranolol Betaxolol Timolol	259.3 307.4 316.4	$9.5 \pm 1.2^{a} \ 9.4^{b} \ 9.2^{c}$	3.3^{a} 2.8^{b} 2.1^{c}

Table 2. Experimental Conditions Used in the Franz Cell Experiments of the $\beta\text{-Blockers}$

β-Blocker	Donor	Experimental	Dosing Volume
	Concentration	Condition	(mL)
Propranolol	4 mg/mL	Nonocclusive	0.15
	propranolol	Occlusive	0.03, 0.07, 0.15, 0.5
Betaxolol	5 mg/mL	Nonocclusive	0.15
	betaxolol	Occlusive	0.03, 0.07, 0.15
Timolol	hydrochloride 5 mg/mL timolol maleate	Nonocclusive Occlusive	0.15 0.03, 0.07, 0.15

Timolol Prediction for three doses

Thickness of skin layers not reported

- ✓ Assumed SC thickness 10um (Simcyp value for back is 9um)
- ✓ Assumed VE thickness 100um (value typical for split-thickness skin)
- Tortuosity (1.5-fold) fitted parameter to match observations (but within the limits of reported value)

CERTAR

Timolol 0.03mL Dose

80

Timolol – Matrix-type Patch formulation

Drug conc. in layers of SC changing with time

CERTAR

Drug conc. changing with depth of SC

- Able to simulate the transient phase and transition to steady-state diffusion
- 12-16 h to achieve steady state diffusion

Simulated plasma drug conc. overlaid with clinically observed data

Comparison of Observed and Predicted PK parameters and %prediction errors

Patel et al. 2015 GRC Dermal Barrier Conference

Diclofenac – solution gel vs. emulsion gel

Observed vs. Predicted drug concentration after solution gel application

- Predictions using as input physicochemical properties of the drug and formulation characteristics
- Tmax over-predicted for the solution gel
- Diffusion coefficients: QSAR predicted / Stokes Einstein equation

Parameter	Observed	Simulated	
S/E Cmax ratio	1.54 1.63		
S/E AUC ratio	2.07 1.62		
F _{AUC}	4.5% (S); 2.8% (E)	3.3% (S); 2.2% (E)	

S-solution gel; E-emulsion gel

Polak et al. 2015 GRC Dermal Barrier Conference

Figure 2. Erythromycin SC individual layers PK profiles.

Figure 4. MPML MechDermA skin stripping experiments Predictions vs. Observations

• The model produces outputs that can be compared with tape-stripping or biopsy data

Cristea et al. 2015, DMDG Drug Delivery Symposium GSK

Drug/Excipient effect on local blood flow and absorption

[1] Input (x)					
O Total Dose (mo)					
PK Compartment	Simcyp Lua Editor - Substrat	e: PD Basic 1 Functions	-0-		
1a 😳 effect compartment K 1b 😳 via summary paramet 2] Transform None 🔹 x Transfo	1 function odeBat 2 local DermisQO, 3 ConcDrmis = SC: 4 DermisQ = Derm: 5 6 return Derm: 7 end	Setup functions Step functions Simcyp set functions Simcyp get functions getIndiv getIndivTarget getIndivEnz/Transp Simcyp sampling functions	* * * *	1/(QD50,	
3] Response Model		Simcyp feedback functions	•	feedbackIndivStomachpH feedbackDermisBloodFlow	
Sigmoid Emax (Hill)			-	1	

CERTARA

Blood Flow change impact: vasodilation

CERTARA

© Copyright 2016 Certara, L.P. All rights reserved.

Blood Flow change impact: vasoconstriction

Future Direction and Your Inputs

- Further validation of the approach for various drugs and different formulations is required to improve confidence in such approach
- Modelling of excipient effects is crucial for BE but very challenging
- Vehicle evaporation and its impact on drug solubility and flux
- Inter-occasion variability for virtual BE negligible data available in public domain
- Many gaps in understanding of skin physiology and its variability
- Disease (psoriasis) population many gaps in known physiology

Acknowledgement

- Simcyp
 - Sebastian Polak (PI)
 - Nikunj Patel
 - Frederico Martins
 - Sinziana Cristea
 - Farzaneh Salem
 - Rachel Rose
 - Khaled Abduljalil
 - Trevor Johnson
 - Felix Stader
 - Masoud Jamei

- FDA
 - Susie Zhang
 - Sam Raney
 - Arjang Talatoff
 - Ho-pi Lin
 - Bryan Newman
 - Priyanka Ghosh
 - Jianghong Fan
 - Lucy Fang
 - Edwin Chow
 - Liang Zhao

<u>Disclaimer:</u> Funding for the work presented here was made possible, in part, by the Food and Drug Administration through grant 1U01FD005225-01, views expressed here by the authors of the work do not reflect the official policies of the Food and Drug Administration; nor does any mention of trade names, commercial practices, or organization imply endorsement by the United States Government.

Thank you

