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Bringing Variety of ML Approaches to 
Bear on Adverse Drug Events 

• Regularized Regression 
• Random Forests 
• Support Vector Machines 
• Graphical Model Learning (Bayes nets, Markov 

nets, dynamic Bayes nets, continuous-time 
models) 

• Deep Learning (deep neural nets, restricted 
Boltzman machines) 

• Relational Learning 
 



Data: EHR or Claims Data in a 
Relational Data Warehouse 

Patient ID Gender Birthdate
P1 M 3/22/1963

Patient ID Date Physician Symptoms Diagnosis
P1 1/1/2001 Smith palpitations hypoglycemic
P1 2/1/2001 Jones fever, aches influenza

Patient ID Date Lab Test Result
P1 1/1/2001 blood glucose 42
P1 1/9/2001 blood glucose 45

Patient ID Date Observation Result
P1 1/1/2001 Height 5'11
P2 1/9/2001 BMI 34.5

Patient ID
Date 

Prescribed Date Filled Physician Medication Dose Duration
P1 5/17/1998 5/18/1998 Jones Prilosec 10mg 3 months



Alternative View of Patient Data: 
Irregularly-Sampled Time Series 



But Most ML Algorithms Expect: 

• Single Table (Spreadsheet), or 
• Regularly-Sampled Time Series 

 
• Another Challenge: ML Algorithms aim for 

accurate prediction, not causal discovery 



Extending SCCS to Numerical Response 
 

Electronic Health Records (EHRs) 
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A Critical Intuition: Underlying Baseline 
 

Person 1 
 

Diabetes 
 

Drug 2 
 Age 

 30 
 

60 
 

Person 2 
 

Bleeding 
 

Age 
 30 

 
60 
 

Baseline: Blood sugar level under no influence of any drugs. 
 



Fixed Effect Model 
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Fixed Effect Model (Frees, 2004): 
 

yij | xij 
 

= αi + β⊤xij + ϵij, 
 

ϵij ∼ N(0,σ2). 
 

dimβ =# drugs 
 



Time-Varying Baseline 
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Time-Varying Baseline, add regularization to minimize change 
In consecutive tij values: 
 
 yij | xij 

 
= tij + β⊤xij + ϵij, 
 

∼ N(0,σ2). 
 

ϵij 



More Ground Truth Available for Glucose Lowering 
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Figure: Left: Precision at K among the top-forty drugs generated by the four 
 models; Right: Partial AUCs on the top-forty drugs generated by the four models. 
 

Sample size: 219306. 
 Number of drug candidates: 2980. 
 



Recovery of Known Glucose Lowering Agents 
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Existing Methods’ Limitations 
 
• Response or candidate conditions must be 

pre-specified (though might be many) 
 
• No consideration of context – ADE might 

only arise when patient 
– is taking another drug (drug interaction) 
– has specific properties, such as low weight or 

specific genetic variation 
 
 



Most Current Approaches 

Warfarin 

Cox2 inhibitor 

ACE inhibitor 

Heart Attack 

Angioedema 

Bleeding 

… … 



What We Would Like: 

Warfarin 

Cox2 inhibitor 

ACE inhibitor 

… 

EMR 

Cox2 inhibitor(P,D) hypertension(P) 

older(P,55) , vioxx(D) 



Reverse Machine Learning 
• We already know who is on drug, and we 

want to find the condition it causes 
• But we don’t know which condition 

– Might not even have predicate for condition in 
our vocabulary 

– Assume only that we can build condition 
definition from vocabulary as a clause body 

• Treat drug use as target concept, and 
learn to predict that based on events after 
drug initiation 



Use Rule Learning (ILP) 
• If antibiotics(P) and bleeding(P) then 

warfarin(P) 
 
• If age_at_least(P,55) and hypertension(P) 

then vioxx(P) 



Using ML to Find Subgroups of 
Patients on Drug Based on 
Common Events Afterward 

• Rule consequent specifies drug and rule 
antecedent specifies ADE 

• Reverse of what we normally expect 
• Richer condition definitions 
• Can identify events that don’t 

correspond neatly to single condition 
• Can identify drug interactions 



SCCS-Like Scoring of Models 

• Search for events that occur more 
frequently after drug initiation than before 

• Example scoring function: 
                  P(tc > td | c,d) 
• Could normalize, dividing by: 
      P(tC > td | C,d) P(tc > tD | c,D) 



               CASEAfter – CASEBefore  
 
where now a CASE is person on a drug 
rather than person experiencing event 
 
  

Temporal filtering and Scoring Functions 
 Cox2 

Inhibitor 



20 

 
 

Results 

• Using only diagnoses  Accuracy = 0.63 
• Using diagnoses, medications, labs   

 Accuracy = 0.78 
 
 



(CASEAfter – CTRLAfter) - (CASEBefore – CTRLBefore) 
 
where Censor Date is 2005 (time CASEs were 
switched from brand to generic)   

Recent Work on Generic vs. Brand Comparison 
 Gabapentin 



Cases and controls 

• Controls 
After 

• Cases 
Before 

• Controls 
•After • Cases 

After 



Reverse Learning 

• - Can we detect who on Generic Gabapentin? 
• - Each Patient is two examples 
• - Confounders: 

– Marshfield policy change 2005  
– Most patients were switched to generic 
– Made unrelated changes to reporting system: 

• spurious, but highly predictive 



Scoring: Informative Rule 
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Scoring: Less Informative 
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Scoring: Informative? 
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Biggest Challenges Now 

• Evaluation: Few known cases of generic vs. brand 
differences for rediscovery evaluations 
 

• Temporal confounding: adding controls (people 
not on drug) removed obvious ones 
– Prescription transmitted electronically 
– ICD code “other non-operative exam” 

 
• But what about newer results such as 

hyperlipidemia, lidoderm, or levoquin? 
 



Future Work 

• Further addressing confounding, temporal and 
otherwise 

• One approach: Incorporating learned rules as 
nodes in a graphical model taking time into 
account 

• Finding new ways to evaluate, such as text 
mining to associate with recent findings in 
literature 



Motivation 



Continuous-time, discrete-state, with piecewise-constant transition rates 
 Point process: piecewise-continuous conditional intensity model (PCIM) 
  (Gunawardana et al., NIPS 2011) 

 Continuous-time Bayesian networks (CTBNs)  (Nodelman et al, UAI 2002) 

 

Continuous-time Graphical Models 

Model of Events 
Point Processes 

Model of Persistent State 
CTBNs 



Example CTBN or Point Process Structure 

1) Simulation 2) Electronic Health Records  

Goal: recover network-dependent event rates – measured by test set log likelihood 



Conclusion 

• ML has at least the potential to bring new 
approaches to ADE Detection task 

• ML needs lessons from Epidemiology 
• ADE Detection task provides exciting variant to 

the hot topic within ML of causal discovery 
– Pearl, Robbins, Cooper, GSS: under what conditions or 

assumptions can we guaranteed-correctly infer causal 
relationships from observational data? 

– Here: as in ML, we don’t expect to be 100% accurate.  
What methods let us most accurately rank causal 
relationships from observational data? 
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