Machine Learning for Adverse Drug Event Detection

David Page

Dept. of Biostatistics & Medical Informatics University of Wisconsin-Madison

Bringing Variety of ML Approaches to Bear on Adverse Drug Events

- Regularized Regression
- Random Forests
- Support Vector Machines
- Graphical Model Learning (Bayes nets, Markov nets, dynamic Bayes nets, continuous-time models)
- Deep Learning (deep neural nets, restricted Boltzman machines)
- Relational Learning

Data: EHR or Claims Data in a **Relational Data Warehouse**

hic	>						
nograph	Patient ID	Gender	Birthdate				
Derri	P1	Μ	3/22/1963				
						r	
	Patient ID	Date	Physician	Symptoms	Diagnosis		
oses	P1	1/1/2001	Smith	palpitations	hypoglycemic		
Diagne	P1	2/1/2001	Jones	fever, aches	influenza		
					r		
	Patient ID	Date	Lab Test	Result			
cults	P1	1/1/2001	blood glucose	42			
1 ab Rest	P1	1/9/2001	blood glucose	45			
	-			-	ľ		
	Patient ID	Date	Observation	Result			
	P1	1/1/2001	Height	5'11			
Vitals	P2	1/9/2001	BMI	34.5			
		-					
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		Date					
dications	Patient ID	Prescribed	Date Filled	Physician	Medication	Dose	Duration
Meu.	P1	5/17/1998	5/18/1998	Jones	Prilosec	10mg	3 months

#### Alternative View of Patient Data: Irregularly-Sampled Time Series



## But Most ML Algorithms Expect:

- Single Table (Spreadsheet), or
- Regularly-Sampled Time Series

• Another Challenge: ML Algorithms aim for accurate prediction, not causal discovery

#### Extending SCCS to Numerical Response



#### Properties

- Longitudinal
- Observational

#### Applications

- Adverse Drug Reaction (ADR) discovery
- Computational Drug Repositioning (CDR)

#### A Critical Intuition: Underlying Baseline



Baseline: Blood sugar level under no influence of any drugs.

#### Fixed Effect Model



• Fixed Effect Model (Frees, 2004):

y_{ij} | x_{ij} = 
$$\alpha_i + \beta^T x_{ij} + \epsilon_{ij}$$
,  $\epsilon_{ij} \sim N(0,\sigma_2)$ .

< D >

Ŧ

200

3 ×

o dimβ =# drugs

#### **Time-Varying Baseline**



Time-Varying Baseline, add regularization to minimize change
In consecutive t_{ij} values:

y_{ij} | x_{ij} = 
$$\mathbf{t}_{ij}$$
 +  $\beta^{||} x_{ij}$  +  $\epsilon_{ij}$ ,  $\epsilon_{ij} \sim N(0,\sigma_2)$ .

< D >

3 ×

3

DQC

#### More Ground Truth Available for Glucose Lowering



Figure: Left: Precision at K among the top-forty drugs generated by the four models; Right: Partial AUCs on the top-forty drugs generated by the four models.

200

- Sample size: 219306.
- Number of drug candidates: 2980.

#### Recovery of Known Glucose Lowering Agents

INDX	CODE	DRUG NAME	SCORE	COUNT	INDX	CODE	DRUG NAME	SCORE	COUNT
1	4485	HUMALOG	-11.786	124	1	4802	INSULIN	47	635
2	7470	PIOGLITAZONE HCL	-10.220	3075	2	8316	REZULIN	50	120
3	8437	ROSIGLITAZONE MALEATE	-9.731	1019	3	824	AVANDIA	59	449
4	4837	INSULN ASP PRT/INSULIN ASPART	-9.658	258	4	416	AMARYL	65	503
5	6382	NEEDLES INSULIN DISPOSABLE	-9.464	2827	5	5226	LANTUS	66	33
6	4171	GLUCOTROL XL	-8.117	2853	6	5789	METFORMIN HYDROCHLORIDE	75	10
7	4106	GLIMEPIRIDE	-7.940	3384	7	4485	HUMALOG	81	63
8	160	ACTOS	-7.721	1125	8	4132	GLUCOPHAGE	86	1813
9	824	AVANDIA	-6.802	1239	9	4811	INSULIN NPH	88	19
10	9152	SYRING W-NDL DISP INSUL 0.5ML	-6.623	4186	10	144	ACTIGALL	90	34
11	4132	GLUCOPHAGE	-6.322	6736	11	1389	CAL	90	45
12	4184	GLYBURIDE	-6.021	8879	12	4171	GLUCOTROL XL	90	701
13	4170	GLUCOTROL	-5.721	1259	13	9155	SYRNG W-NDL DISP INSUL 0.333ML	95	29
14	4208	GLYNASE	-5.670	591	14	4116	GLUCAGON	97	121
15	416	AMARYL	-5.599	2240	15	6652	NOVOLOG	98	51
16	4107	GLIPIZIDE	-5.563	9993	16	160	ACTOS	106	480
17	844	AXID	-4.682	189	17	6646	NOVOFINE 31	106	31
18	2830	DILTIAZEM	-4.297	1021	18	4813	INSULIN NPL/INSULIN LISPRO	108	118
19	4806	INSULIN GLARGINE HUM.REC.ANLOG	-4.175	4213	19	8437	ROSIGLITAZONE MALEATE	109	332
20	5787	METFORMIN HCL	-4.147	19584	20	4170	GLUCOTROL	113	641
21	2824	DILAUDID	-4.076	39	21	9889	URSODIOL	113	123
22	5786	METFORMIN	-3.890	3838	22	5052	KAY CIEL	114	23
23	7731	PRAVACHOL	-3.532	1700	23	4118	GLUCAGON HUMAN RECOMBINANT	115	227
24	1760	CELEXA	-3.517	1473	24	2521	DARVOCET-N	116	11
25	4497	HUM INSULIN NPH/REG INSULIN HM	-3.501	1829	25	7470	PIOGLITAZONE HCL	121	705
26	9889	URSODIOL	-3.132	376	26	5786	METFORMIN	125	2149
27	4813	INSULIN NPL/INSULIN LISPRO	-2.972	623	27	10366	ZINC SULFATE	130	34
28	4133		-2.845	765	28	4500	HUMULIN	135	33
29	6445	NEURONTIN	-2.615	1418	29	4172		130	115
30	6656		-2.500	2874	30	(4/1	PIOGLITAZONE HCL/METFORMIN HCL	136	16
31	9379		-2.383	341	31	6382		137	649
32	1636		-2.198	1079	32	4184	GLYBURIDE	144	1354
33	1218	BLOOD SUGAR DIAGNOSTIC DRUM	-2.073	2593	33	4208	GLYNASE	145	115
34	8025	PROZAC	-2.037	1525	34	4210	GLYSET	148	(
35	0126		-1.895	444	35	4163 5077	GLUCUSE	159	1//8
30	4000		-1.000	4500	30	2010		103	19
3/	4802		-1.812	1526	37	1946		163	6
38	10/4		-1.//9	9042	38	1002		102	03
39	4804		-1.752	2476	39	1305		185	9
40	1200	BLOOD-GLOCOSE METER	-1./19	5269	40	1000		100	43

# Existing Methods' Limitations

- Response or candidate *conditions* must be pre-specified (though might be many)
- No consideration of *context* ADE might only arise when patient
  - is taking another drug (drug interaction)
  - has specific properties, such as low weight or specific genetic variation

## Most Current Approaches



## What We Would Like:



$Cox2 inhibitor(P,D) \longrightarrow$	hypertension(P)
older(P,55) , vic	oxx(D)

PatientID	Gender	Birthdate
P1	М	3/22/63

PatientID	Date	Physician	Symptoms	Diagnosis
P1	1/1/01	Smith	palpitations	hypoglycemic
P1	2/1/03	Jones	fever, aches	influenza

PatientID	Date	Lab Test	Result	PatientID	SNP1	SNP2	 SNP 1M
P1	1/1/01	blood glucose	42	P1	AA	AB	BB
P1	1/9/01	blood glucose	45	P2	AB	BB	AA

PatientID	Date Prescribed	Date Filled	Physician	Medication	Dose	Duration
P1	5/17/98	5/18/98	Jones	prilosec	10mg	3 months



## Reverse Machine Learning

- We already know who is on drug, and we want to find the condition it causes
- But we don't know which condition
  - Might not even have predicate for condition in our vocabulary
  - Assume only that we can build condition definition from vocabulary as a clause body
- Treat drug use as *target concept*, and learn to predict that based on events *after* drug initiation

## Use Rule Learning (ILP)

• If *antibiotics(P)* and *bleeding(P)* then *warfarin(P)* 

• If *age_at_least(P,55)* and *hypertension(P)* then *vioxx(P)* 

## Using ML to Find Subgroups of Patients on Drug Based on Common Events Afterward

- Rule consequent specifies drug and rule antecedent specifies ADE
- Reverse of what we normally expect
- Richer condition definitions
- Can identify events that don't correspond neatly to single condition
- Can identify drug interactions

# SCCS-Like Scoring of Models

- Search for events that occur more frequently after drug initiation than before
- Example scoring function:

 $\mathsf{P}(\mathsf{t}_{\mathsf{c}} > \mathsf{t}_{\mathsf{d}} \mid \mathsf{c},\mathsf{d})$ 

• Could normalize, dividing by:

 $P(t_{c} > t_{d} | C,d) P(t_{c} > t_{D} | C,D)$ 

### **Temporal filtering and Scoring Functions**



 $CASE_{After} - CASE_{Before}$ 

where now a CASE is person on a drug rather than person experiencing event

### **Results**

Rules for Cox2(A) :-	Pos	Neg	Total	P-value
diagnoses(A,_,'790.29','Abnormal Glucose Test, Other Abn Glucose',_).	333	137	470	6.80E-20
diagnoses(A,_,'V54.89','Other Orthopedic Aftercare ',_).	403	189	592	8.59E-19
diagnoses(A,_,'V58.76','Aftcare Foll Surg Of The Genitourinary Sys',_).	287	129	416	6.58E-15
diagnoses(A,_,'V06.1','Diphtheria-Tetanus-Pertussis,Comb(Dtp)(Dtap)',_)	. 211	82	293	2.88E-14
diagnoses(A,_,'959.19','Other Injury Of Other Sites Of Trunk ',_).	212	89	301	9.86E-13
diagnoses(A,_,'959.11','Other Injury Of Chest Wall',_).	195	81	276	5.17E-12
diagnoses(A,_,'V58.75','Aftcar Foll Surg Of Teeth, Oral Cav, Dig Sys',_).	236	115	351	9.88E-11
diagnoses(A,_,'V58.72','Aftercare Following Surgery Nervous Syst, Nec',_	)222	106	328	1.40E-10
diagnoses(A,_,'410','Myocardial Infarction',_).	212	100	312	2.13E-10
diagnoses(A,_,'790.21','Impaired Fasting Glucose ',_).	182	80	262	2.62E-10

Test S	Summary	Statistics
--------	---------	------------

Rule	+	-	_	
+	838	333	1171	
-	987	1492	2479	
	1825	1825	3650	
<i>v</i> – 06	38			

Accuracy = 0.638Testset Recall/Precision/F1/Dsq2best = Testset ROC_x/ROC_y/Dsq2best =

0.459 0.716 0.559 0.373 0.182 0.459 0.326

- Using only diagnoses  $\rightarrow$  Accuracy = 0.63
- Using diagnoses, medications, labs  $\rightarrow$ Accuracy = 0.78

#### **Recent Work on Generic vs. Brand Comparison**



$$(CASE_{After} - CTRL_{After}) - (CASE_{Before} - CTRL_{Before})$$

where Censor Date is 2005 (time CASEs were switched from brand to generic)

### **Cases and controls**



### **Reverse Learning**

- - Can we detect who on Generic Gabapentin?
- - Each Patient is two examples
- - Confounders:
  - Marshfield policy change 2005
  - Most patients were switched to generic
  - Made unrelated changes to reporting system:
    - spurious, but highly predictive

### Scoring: Informative Rule



### **Scoring: Less Informative**



### Scoring: Informative?



## **Biggest Challenges Now**

- Evaluation: Few known cases of generic vs. brand differences for rediscovery evaluations
- Temporal confounding: adding controls (people not on drug) removed obvious ones
  - Prescription transmitted electronically
  - ICD code "other non-operative exam"
- But what about newer results such as hyperlipidemia, lidoderm, or levoquin?

### Future Work

- Further addressing confounding, temporal and otherwise
- One approach: Incorporating learned rules as nodes in a graphical model taking time into account
- Finding new ways to evaluate, such as text mining to associate with recent findings in literature

### Motivation



#### **Continuous-time Graphical Models**

#### Continuous-time, discrete-state, with piecewise-constant transition rates



#### **Example CTBN or Point Process Structure**



Goal: recover network-dependent event rates – measured by test set log likelihood

## Conclusion

- ML has at least the potential to bring new approaches to ADE Detection task
- ML needs lessons from Epidemiology
- ADE Detection task provides exciting variant to the hot topic within ML of causal discovery
  - Pearl, Robbins, Cooper, GSS: under what conditions or assumptions can we guaranteed-correctly infer causal relationships from observational data?
  - Here: as in ML, we don't expect to be 100% accurate. What methods let us most accurately rank causal relationships from observational data?

## Thanks

- Peggy Peissig
- Rick Hansen
- Michael Caldwell
- Vitor Santos Costa
- Charles Kuang
- Aubrey Barnard
- Jeremy Weiss
- FDA
- NIGMS