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=  Pharmacokinetic (PK): study of the time course of the drug in the body!!]

» AUC: area under the plasma drug concentration versus time curve

Concentration

> C., ... maximum plasma concentration
max p AUC

= Bioequivalence (BE): PK equivalence between drug formulations

Time

» traditionally, TOST[! on estimates of AUC and C,,,4, obtained using the non-compartmental analysis (NCA)B3!

» in a previous work, model-based (MB) TOST, using nonlinear mixed effects model NLMEM), was proposed as an
alternative for NCA-based TOST in sparse design!4!

= At the design stage
» assumptions on the expected variability of AUC and C,,,, are needed

» if uncertainty, recently proposed to perform two-stage studies for TOST-NCA: group sequentiall’! or adaptive designs!!

[11: J. Gabrielsson et al., Pharmacokinetic & pharmacodynamic, 4th edition 2006 12 Schuirmann, Journal of Pharmacokinetics and Biopharmaceutics, 1987 31: Guidance for industry — Bioequivalence: Blood level bioequivalencestudy, VICH GL52,2016 4
1l: Dubois et al., Statistics in Medicine, 2011 BB): Kieser et al., Statistics in Medicine, 2015 [6): Maurer et al., Statistics in Medicine, 2018




Two one-sided test (TOST)

= BT ratio of AUC or C,,q, geometric means to be compared to the threshold § = log(1.25) =~ 0.223[1]
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=  TOST null hypothesis Hy:{ 7" < —8§ or " = &} is decomposed into
HO,—5: {ﬁT‘I" S _5} or H0,5: {ﬁT‘I" 2 5}

= both Hy _sand H 5 shall be rejected at a = 5% 1if

_ BT+ _
Z_5 = SEGET) > Zy_qgand Zs =

BTT_(S‘ _
sEgT) 1

SE(BT™): standard error of B7"
Z1_g. 1 — a™ quantile of the normal distribution

= or equivalently
CI(BT™ )20 =BT+ zi_y XSE(BT™)includedin[-6; +6]

where Cl;_,,(BT): confidence interval of f7" atlevel 1 — 2a

NB: Often exponential of each boundary of the Cly,, are computed and comparedto [ 0.8 ; 1.25]

[1I: Guidance for industry — Bioequivalence: Blood level bioequivalence study, VICH GL52, 2016



NCA-TOST for crossover designs

 AUC and C_,, traditionally obtained using the trapezoidal rule and directly from the observations
respectively
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*  Estimation using linear mixed effect model

*  Individual AUC of subjecti=1, ..., N at period k=1, ..., K
log(AUCy) = Aayc + BavcTix + BaucPre + BaucSi + Nauc; T Kaucy,

T ) yc- expected value of AUC for reference class

- B 8., 8,5 treatment, period, and sequence effect coefficients
- Ty P, §; treatment, period, and sequence covariate vectors

- Nauc; ~N(0, wyye): between-subject random effect

- Kaucy, ~N(0,¥ 4yc): within-subject random effect

- Asymptotic SE(B ;) estimated from observed Fisher Information matrix (FIM)

- NB: Same for Cmax




Methods

NCA-TOST for crossover designs

AUC and C_, traditionally obtained using the trapezoidal rule and directly from the

observations respectively

Estimation using linear mixed effect model

PROS
e Reproductible
* Few assumptions

CONS
e  Require more than 10 samples per subject
per period

Not appropriate for nonlinear PK
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H NLMEM- TOST for crossover studies
=
=  For crossover design, the concentration y;;; of subjecti (i =1, ..., N), at sampling time t;j, (i = 1,...,n;j), at period
kk=1,.. K
( ) Vijk = f(tijk Pix ) + 9(Eiji, Pir) €iji
» where

f(tijk,cpik): structural PK model
g(tijk' (pik) = Ointer + Gslope X f(tijkl (pik): combined error model
€;j~ N(0,1): residual errors
T P S
log (@) = log(A) + B;" Tri+ By Pe + B0 Si + M + ki
» where
[ =1,..,p withp the number of PK parameters
A;: fixed effect for the covariate reference class
Tr;, P, S;: indicators for the treatment, period and sequence
17, BL, B;: coefficients of treatment, period and sequence effects on the log of the PK parameter
n;; ~ N(0, w;;): between subject variability (BSV)
Kiia ~ N(0,y;;): within subject variability (WSV)
= BT =h(4, ,Tr) on AUC and Cy,,, are secondary parameters of PK model

= SE(B™) determined by delta method using fixed effects population Fisher Information Matrix (FIM)




Methods

NLMEM- TOST for crossover studies

For crossover design, the concentration y;;j of subject i (i = 1, ..., N), at sampling time t;;; (i = 1,...,n;ji), at period

k(k=1,..K)

Viik = f (tijio @i ) + 9(Cijie, i) Eiji

log(@ir) = log(4;) + 31Tr Tr; + .sz P, + ,815 Si + i + Ky

= BT =h(4,B]") on AUC and C,q, are secondary parameters of PK model

= SE(B™) determined by delta method using fixed effects population Fisher Information Matrix (FIM)

CON
e Assumptions on PK model
» Potential increase of type I error when

PRO
» Few samples per subject

using asymptotic SE[!!

12

11: Dubois et al., Statistics in Medicine, 2011



Methods

TOST for parallel designs

=  For biosimilars (long half-life) and BE studies in patients, often parallel designs are needed

. For both NCA and NLMEM, the approach is similar except

®*  There 1sno within subject variability

®*  There is not sequence and period effect

e NCA-TOST
* Individual AUC of subjecti=1,...N

log(AUC) = Agyc + BaicTi + Navc,
e« NLMEM-TOST
log(@y) = log(A4) + B]" Try + ny

10



Objectives
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1. To propose new approaches to correct for type I error inflation of

TOST in MBBE and to evaluate them by clinical trial simulation

* (Crossover designs

* Parallel designs

2. To implement two-stage sequentiallll and adaptivel?! designs with

model-based TOST and to evaluate them by clinical trial simulation

11

(11: Kieser et al., Statistics in Medicine, 2015 21: Maurer et al., Statistics in Medicine, 2018



Objectives

Objectives

1. To propose new approaches to correct for type I error inflation of

TOST in MBBE and to evaluate them by CTS

* (Crossover designs

* Parallel designs

(11: Kieser et al., Statistics in Medicine, 2015 21: Maurer et al., Statistics in Medicine, 2018
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Other approaches for computing SE in MBBE

TO ST using parametric bootstrap (TO ST boot)
1) Buildl,...,B(B=250)datasets of X.;1 Y. r_; Nix vectors of response using equation (1) and
e B (Np) matrices of random effects from N(0,72)
e B (2Np) matrices of random effects from N(0,I")
e B Z?’zl 21,;1 N residual errors from N(0,1)
3) Fit the B new datasets to get B estimates of (A,B,w,v,a,b)
4) TO ST using the standard deviation of the B 7" instead of SE(B,,,T7)

13



Other approaches for computing SE in MBBE
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TO ST using parametric bootstrap (TO ST boot)
1) Buildl,...,B(B=250)datasets of X.;1 Y. r_; Nix vectors of response using equation (1) and
e B (Np) matrices of random effects from N(0,72)
e B (2Np) matrices of random effects from N(0,I")
e B Z?’zl 21,;1 N residual errors from N(0,1)
3) Fit the B new datasets to get B estimates of (A,B,w,v,a,b)
4) TO ST using the standard deviation of the B 7" instead of SE(B,,,T7)

TO ST using a posteriori distribution (TO ST post)
1) Drawl,...,B(B=1000) samples from the a posteriori distributions of (A,B,w,y,a,b)using Stan
e Initialize the HMC chain at estimates from step 1
e  Default distribution on fixed effects A, B
« Cauchy(0,2.5) priors on w, v, a, b i.e.
3) TO ST using the standard deviation of 8, 7" a posteriori distribution.




(7]
T
o
<
=
)
=

Other approaches for computing SE in MBBE

TO ST using parametric bootstrap (TO ST boot)
1) Buildl,...,B(B=250)datasets of X.;1 Y. r_; Nix vectors of response using equation (1) and
e B (Np) matrices of random effects from N(0,72)
e B (2Np) matrices of random effects from N(0,I")
e B Z?’zl 21,;1 N residual errors from N(0,1)
3) Fit the B new datasets to get B estimates of (A,B,w,v,a,b)
4) TO ST using the standard deviation of the B 7" instead of SE(B,,,T7)

TO ST using a posteriori distribution (TO ST post)

1) Drawl,...,B(B=1000) samples from the a posteriori distributions of (A,B,w,y,a,b)using Stan
e Initialize the HMC chain at estimates from step 1
e  Default distribution on fixed effects A, B
« Cauchy(0,2.5) priors on w, v, a, b i.e.

3) TO ST using standard deviation of B,,7" a posteriori distribution.

TO ST using Gallant correction (TO ST Gallant)
1) Calculate SE4(B,.T7) = SE(B,T) x |—2~— with df; = 2N — dim(2)

df Gallant

2) TOSTusing SE (ﬁmTr) instead of SE(B,,'") and t1_, 4y, instead of z;_,

15



Crossover design: Simulation study
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= PK model concentrations of theophyllinel!

Dose

)\ka = 15 h_l ACl = 0.04 Lh_l
@ P }\V =05L >

. Under rich (R) and sparse (S) designs:
»  R:n=10 sampling times, ¢ =(0.25,0.5, 1,2,3.5, 5, 7,9,12,24)
» S: n=3 sampling times, ¢t = (0.25,3.35,24)

» 2 designsN =40, n=10; N=40, n=3

0; o
w (% o inter | “slope Same w and y for all PK parameters
OO YO0 Nomg/ny | () BP = pS = 0
50 15 0.1 10

=  Simulations under Hy: 87" =10g(0.80) and H;: BT" =log(1) =0
=  Evaluation of BE on AUC and C,,,, independently
= 500 data sets

=  Estimation using SAEM algorithm in Monolix software

11: Dubois et al., Statistics in Medicine, 2011
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Crossover: type I error with asymptotic SE

Type | error and Power of NCA TOST and MB TOST

Type 1 error
000 001 002 003 004 005 0068 007 008 009 0410 011 0412

on Bayc " (0) and Beay " (A)

N=40, n=10 N=40 , n=3
Power | NcaA | MBTOST | MB TOST
TOST | Asympt Asympt
Buc™ | 1.000 | 1.000 0.998
Be.,” | 1.000 | 1.000 1.000

T
N=40 n=10

I
N=40 n=3

18
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Crossover: results for various SE

Type | error and Power of MB TOST on B, (0) and Bcpay " (A)

N=40 n=3
Sia
S A A
- A
=
6 [Ty}
~— Q O
2 P @) o
=2
9 O
= ‘ | | |
Asympt Gallant Post Boot
1 min 1 min 2.5 min 5 hours
Bauc™ 0.998 0.998 0.996 *
Bemax " 1.000 1.000 0.996 *

19
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Crossover: results for various SE

Type 1 error

Type | error and Power of MB TOST on B, (0) and Bcpay " (A)

Computing time

Power

N=40 n=10

ST A

= AN

8 JAN
(= O

g | O

° o
= | | |

Asympt Gallant Post
1 min 1 min 7 min

Bauc™ 1.000 1.000 0.998
Bemax™ 1.000 1.000 0.998

N=40 n=3
Sia
S A A
- A
=
6 [Ty}
~— Q O
2 P @) o
=2
9 O
= ‘ | | |
Asympt Gallant Post Boot
1 min 1 min 2.5 min 5 hours
Bauc™ 0.998 0.998 0.996 *
Bemax " 1.000 1.000 0.996 *

20



Parallel design: Simulation study
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= PK model concentrations of theophyllinel!

Dose

)\ka = 15 h_l ACl = 0.04 Lh_l
@ P }\V =05L >

. Under rich (R) and sparse (S) designs:
»  R:n=10 sampling times, ¢ =(0.25,0.5, 1,2,3.5, 5, 7,9,12,24)
» S: n=3 sampling times, ¢t = (0.25,3.35,24)

» 2 designs: N =40, n=10; N=40, n=3 (N= 20 per group)

» 2 levels of variability W, (%) | wy(%) | wg(%)
Low (L) | 22 11 22
High (H) 52

Simulations under Hy: B7" = 1og(0.80) and H,: BT =log(1) = 0

Evaluation of BE on AUC and C,,,,,, independently

500 data sets

Estimation using SAEM algorithm in saemix (R) U Dubois et af, Statistics in Medicine, 2011




Parallel design: One simulated data set for low
variability

Methods

Rich (N=40,n=10) Sparse (N=40,n=3)

R T R T
e - 2 - 2 - 2 -
J J J J
c o | c o c o c o
[ [ [ [
Ho % = = =
= = = =
= = = =
g g g g
= = = =
i i i i
o — L= L= o -

22

11: Dubois et al., Statistics in Medicine, 2011



Parallel: type I error of TOST with asymptotic SE

Sampling time Rich Sparse

Variability Low | High | Low | High
AUC | 0.052 [0.022\ - -

NCA-TOST

MB-TOST




TOST and BOT

« TOST is a conservative test in case of high variability ['-?]
* Bettertest in BE: the Bioequivalence Optimal Test (BOT)

« TOST on B’"
e BothHy_g:{B"" < —6} and Hy 5:{B"" = 6} shall be rejected at a = 5%

-
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=

* Reject if: P> Z 4 — ———and P 7y gt —
Y Spgprny = M1ma T spen) N sm (et = T Ama T Sm(pT)
> Implies SE(BT) > . ° otherwise type I error of TOST =0
1-a

« BOTonpB™"

e Idea: the distribution of the absolute difference of the treatment effects on log AUC/log Cmax
are given by a folded normal distribution

 Rejectif: |BT”| <u, where u,isthe a-quantile of the folded normal distribution
Nr(8,SE(B")?)

» Type I error 1s a per construction
24

> BOT iS unlformly mOSt powerful [1] Philips KF.JPharmacokinet Biopharm (1990) [2] Tsaietal. Statin Med (2014)
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Power curve comparison of TOST & BOT

TOST (black dashed line) vs. BOT (red solid line)

E | E i E .--x_'.ll ;

“ 3 N I L S

- — bR A—

A N N R s
SE(B")=0.07 SE(B™)=0.12 SE(BT™) = 0.14 (log(1.25) /1.645)

Type | error of TOST=0.05

Type | error of TOST=0.03

RESEARCH ARTICLE

Efficient model-based Bioequivalence Testing

Kathrin Mollenhoff! | Florence Loingeville® | Julie Bertrand® | Thu Thuy Neuyen® | Satish

Sharan® | Guoying Sun’® | Stella Grosser” | Liang Zhao* | Lanyan Fang* | France Mentré® | Holger

Dette!

Type | error of TOST=0.00

Submitted to Statistics in Medicine
September 2019

25



Parallel: type I error of TOST and BOT with
asymptotic SE

Sampling time Rich Sparse
Variability Low | High | Low | High
AUC | 0.052 | 0.022 | - -
NCATOST C_..10062| 0012 - -
/0.054
AUC | 0.052 V0. - -
NCA-BOT C_.. | 0.062 <\0.05;>
vRTosT | AUC | 0056 0.004 6
C... | 0.058 | 0.008 \0.066
AUC | 0.056 /0.06
MB-BOT C... | 0.070 <\0.06§>

N




Parallel: Power of TOST and BOT with asymptotic SE

Sampiing Ti:’ne Rich éparse
Variability Low | High | Low | High
woxrost | A [omeoba - |
wcnsor | S [ame 2]
wwrost | SLC 00 [ome [0 o
. . 3
i Y e

27



Results

Parallel: Type I error of TOST various SE

Low variability

Power

Computing time

Type | error of MB TOST on B, " (0) and By " (A)

N=40 n=10
55 | A
- | © o
P A
E § | ° A
o) o
= [ I I |
Asympt Gallant Post Boot
0.25 min 0.25 min 5 min 43 min
Bauc” 0.830 0.782 0.772 0.832
Bemax' " 1.000 1.000 0.966 1.000

N=40 n=3
g | o
S - &
55 | o
% = A o
— § . A
©
S
=3
s T T T ]
Asympt Gallant Post Boot
Bauc™ 0.804 0.762 0.712 0.800
Bemax" 1.000 0.998 0.990 1.000

28



Parallel: Type I error of TOST various SE
Low variability

Type | error of MB TOST and MB BOT on B,,c™ (0) and B ™ (B)

N=20 n=3 N=40 n=3
o o
o S |
o) (2]
o o
P o
3 A A 3 |
o S 00
5 A S o 44
o o
58 | o A o8 o8 °
O S O S Ja 0
Cl)ln GJLD °
-— O e AA
o ° 0 AL o °
O « o
> 3 > 3
- o = o
2 ° 2 |
o 0 o
o S |
o o
5 5
o
o o
o S

o

' ! ' | | | |
Asympt Gallant Post Asympt Gallant Post Boot
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Parallel: main conclusion on type I error

Type 1 error for sparse parallel design

0.10

0.08

0.06

0.04

0.02

0.00

Low variability product

. A
@
I I I I I I
TDSTasympt TOSTGallant TDSTpust BDTasympt BOTGallant BDTpust

High variability product

0.10
|

0.08
|

0.06
I

0.04
|

0.02
|

"
®
[a=]
—

TDSTasyrnpt TOSTGallant TDSTstt

e —

I
BOTas‘,rmpt

I
BOTGEIIant

T
BOTpost
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Objectives

Objectives

2. To implement two-stage sequentiallll and adaptivel?! designs with

model-based TOST and to evaluate them by CTS

(11: Kieser et al., Statistics in Medicine, 2015 21: Maurer et al., Statistics in Medicine, 2018

31



Methods

One-stage study design

Sample size Npg

l

Data collection and analysis

BT, SE(BT) > Zy 5
TOST at

BE fails

Sample size computed from
assumptions on BSV or WSV

BE passes

32



Methods

Sample size N

First stage

Sequentiallll (TSS)

N, = NOS/Z

Data collection and analysis

AIT7 SE(BIT)7 &)\17 }’/\1 - Zl,i5
TOST at a;

Adaptivel?l (TSA)
Define weight w, as

Nl/N2 ="1/1_w,. Here

S NS

Two-stage study designs: sequential or adaptive

Second stage

Sequentiallll (TSS)

N, :N1=NOS/2

!

Adaptivel2l (TSA)

Sample size N, calculation
using f7",@,, 7, and a,

v

BE passes

Wl - 0.5 thel‘l Nl == NOS/Z

Type I error
a, = a, = 0.0304
to ensure global
a <0.05

W: Kieseret al., Statistics in Medicine, 2015

Power estimate for
LI and SE(BTT)

Using both stages data
B;Tr, SE(.BAZTT‘)’ &)2’ )//\2 - ZZ,iS

Using only 27dstage data
B;TT’ SE(B\;T‘)’ (32’ )//\2 = ZZ,iS

}

|

/\ TOST at a,, Standard combination test[?!
> 0.80 1441 XZl,iS-l_(l _Wl)XZZ,i5
= U. <0.80 S NS ater,
1 | R NT
BE passes BE fails BE passes BE fails
BE fails 2ndstage
[21: Maurer et al., Statistics in Medicine, 2018 23
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Simulation study

PK model concentrations of theophyllinel!l

Dose
>
Rich S=study design

» n = 10 sampling times t = (0.25,0.50,1, 2,3.50,5,7,9,12, 24 h)

g = 0.04 Lh?
}\V =05L >

—> Standard one-compartment PK model with rich sampling times

» Parallel (low variability) » Crossover

Ointer | Oslope Ointer | Oslope
wka (%) Wy (%) Wy (%) (mg/L) (%) (1)(%) V(%) (mg/L) (%)
22 11 22 0.1 10 50 15 0.1 10
Simulation under and Hy: BT =1log(1) =0
500 simulated data sets
Evaluation of BE on AUC

Estimation using SAEM algorithm in saemix (parallel) or Monolix (crossover)

Same w and y for
all PK parameters

,8P=ﬂ5=0

34



Sample size calculation
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= Assumptions

» Typelerror a = 0.05; power1— £ = 0.80

» Assumed ST =1og(0.95)

» Assumed correct values for fixed effects 4;

» Three assumptions for variances:

e Parallel * (Cross over
Residual errors 0 Residual errors
BSV w (%) standard deviations WSVy (%) standard deviations
Oint Osi BSV @ (%) Oint Oslope
True Hi h miter Siope True Hi h inter
Low & mg/L) | (%) Low & mg/L) | (%)
10 22 30 0.1 10 50 5 15 25 0.1 10

=  Number of subjects for One Stage design computed using the expected population FIM (PFIM 4.0 software)!!!

[1: Dumont et al., Computer Methods and Programs in Biomedicine, 2018

35



Under H, (Bioequivalence)
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100
J
100
|

. (O Parallel

/\ Crossover

OS TSS TSA

Power (%)
Nyt median [ 5-95 % ]

T T 1 T T 1
Low True High Low True High

Assumption on BSV or WSV Assumption on BSV or WSV
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9 Under H; (Bioequivalence)
~
Roo
2 . 2
A
e E g O Parallel
z ¢ /\ Crossover
OS TSS TSA
T4

Low True High Low True High
Assumption on BSV or WSV Assumption on BSV or WSV
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Under H, (Bioequivalence)

Power (%)

100

80

60

40

20

Low

True
Assumption on BSV or WSV

High

Nyt median [ 5-95 % ]

100

80

60

40

20

0O

=

“14

Low

True
Assumption on BSV or WSV

High

(O Parallel

/\ Crossover

OS TSS TSA
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Under H, (Bioequivalence)

Power (%)

100

80

60

40

20

Ja
9N
Roo O
AN
o B
A
i
o

Assumption on BSV or WSV

Nyt median [ 5-95 % ]

100

80

60

40

20

0O

=

“14

Low

True
Assumption on BSV or WSV

High

(O Parallel

/\ Crossover

OS TSS TSA
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9 Under H; (Bioequivalence)
~
8 - A 8 -
29N
Roo O i
S - 2 - O
A
O & I
Bl 2 H o
e “E; g | ) & O Parallel
A = P /\ Crossover
A
| o N T P OS TSS TSA
X O X o]0
ny Vil
244 gt
. Assumption :r:eBSV or WSV - - Assumption ::EBSV or WSV "

. TSS led to similar or lower N, than OS
. TSS power were lower than OS
. TSA led to higher N;,; when assumed variability low, lower N¢,; when assumed variability high

40
. TSA power was higher than OS when assumed variability low, was slightly smaller than OS when assumed variability high
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1. MBBE is feasible for parallel and cross-over designs
*  When variability 1s large compare to N, TOST could be problematic and BOT should be used
* NLMEM-TOSTbased on asymptotic SE leads to an increased type I error, especially for sparse design
* Three approaches were studied to get better SE: Bootstrap, posterior distribution and Gallant correction
> Bootstrap too computationally intensive and not always enough correction

» Full posterior distribution the best approach
0 Presently using Stan

0 Shoud be implemented in saemix/ Monolix (FDA Grant 2 year 2)
2. MBBE is feasible for two-stage designs (sequential or adaptive)
* Preservedtype I error in most cases (only rich design studied), pb of TOST for very small studies

* Two-stage sequential approach of limited benefit when variability too low (loss of power), gain on number
of individuals if variability too high

* Two-stage adaptive approach can increase sample size if variability too low (increase of power), and reduce

sample size when variability too low with only slight loss of power
41

* Further extensions/evaluations of adaptive two-stage are needed for sparse design
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Perspectives

= Perform analyses and simulations from real examples
* FDA ophthalmic drug data set, Novartis, Roche, Servier data sets

* Study influence of design, and of assumed model?

= Implement full posterior distribution in saem

= Extend two-stage designs with no asymptotic SE

FDA Grant 2 ( 2 years)

m INSERM: France Mentre, Julie Bertrand,

. RUB: Holger Dette,

- Novartis: Frank Bretz, Didier Renard, Bjoern Bornkamp
. Roche: Francois Mercier

=  Servier: Marylore Chenel
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Backup slides

= Results of two-stage study designs under H,,

43
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. TSS led to similar or lower N, than OS
. TSA led to higher N;,; when assumed variability low, lower N;,; when assumed variability high

. In most cases, TSS and TSA type I error estimates were within the 95%PI = [0.0326 — 0.0729]

° Pb of TOST for low variability and low sample size in some TSS and TSA results
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