Bioequivalence Testing: Can Systemic Pharmacokinetic Profiles from Corticosteroid Nasal Sprays be used to Elucidate Local Drug Deposition within the Nose?

Worth Longest, Alex Rygg & Michael Hindle

Schools of Engineering and Pharmacy Virginia Commonwealth University

Introduction

- \triangleright Demonstration of bioequivalence is required for a generic drug product to enter the market
- \triangleright Bioequivalence: The absence of a significant difference in the rate and extent to which the active ingredient … in a pharmaceutical equivalent … becomes available at the site of drug action when administered at the same molar dose … [1]
	- Same rate and extent
	- Specific site
	- When delivered at the same dose

[1] Li, Jin, and Lee (2013) The AAPS Journal 15:875-883

Same local dose concentration profile

Introduction

- Corticosteroid nasal spray products represent a large market (\$10 billion / year)
- > Bioequivalence for a nasal spray suspension product in the US is currently based on a weight of evidence approach (adapted from [1])

Equivalent In Vitro Performance

- Single actuation dose content
- Droplet size distribution
- **Drug in small** particles/droplets
- Spray pattern
- Plume geometry
- Priming and re-priming

Equivalent Systemic Exposure

• Pharmacokinetic (PK) study

Equivalent Local Delivery

• Clinical endpoint study

Formulation Sameness

• Formulation: Q1/Q2 equivalence

Device Similarity

• Valve, pump, and actuator designs as close as possible in all critical dimensions

Introduction

Equivalent local delivery

- Most difficult to establish
- Currently based on a "clinical endpoint study"
- Clinical endpoints related to inflammation are challenging to define
- Suggested that this could be assessed based on drug plasma profiles
	- Determined from a pharmacokinetic (PK) study
	- PK studies are conducted for systemic exposure

> However, a direct link between nasal drug deposition and drug plasma profiles has not been established

Objective

 Objective: Implement a new nasal transport model to investigate the relationship between nasal spray deposition and drug plasma profiles

Critical questions:

- Are drug plasma profiles sensitive to deposition patterns of spray droplets in the nasal airways?
- Is the use of drug plasma profiles a practical way to determine equivalent local delivery?
- Should we consider a different technique to determine equivalent local delivery?

Methods

CFD-PK Nasal Transport Model

(a) CFD model used to predict local nasal spray deposition

(b and c) CFD simulations are used to predict dissolution, absorption and clearance

(d) Following absorption, a PK model is used to predict drug plasma profiles

Components - Deposition

 In vitro assessment of nasal spray droplet size distribution

EXA CFD simulation of droplet transport from spray nozzle to site of initial deposition

Nasonex nasal spray product: Mometasone furoate (MF)

 \triangleright Nose is divided into the nasal vestibule (NV) and middle passage (MP) regions

Components – Mucus Motion

 Surface model was used to represent 7 µm thick layer of airway surface liquid (ASL)

 ASL injected at constant rate in the MP to generate an average clearance velocity of 5 mm/min

- \triangleright No mucus injected in the NV
- Variable mucus velocity field

Components – Absorption

 Suspended drug particles released at droplet deposition locations

 Dissolution, diffusion, convection, and absorption simulated with CFD

> No absorption in NV and no resistance to absorption in MP

Components – PK Model

 Starting point is absorption into nasal epithelial tissue Rate constants determined from *in vivo* data

Validation – Spray Deposition

100 80 Percent Deposition of Drug Mass (%) 70 60 **□ Vestibule: in vitro** 50 Vestibule: CFI **□ Middle: in vitro** Middle: CFD 40 30 20 10 Ω 30 degrees, No Inhalation Slow Inhalation **Fast Inhalation**

 Considered NV and MP deposition

- *In vitro* vs. CFD
- \ge Spray angles: 30, 40 & 50 \circ
	- Good agreement

 \triangleright Also considered 30 \circ with:

- No inhalation
- Slow nasal inhalation
- Fast nasal inhalation

[2] Azimi, Longest and Hindle (2015) RDD Europe 1:121-130

Validation – Particle Dissolution

- *In vitro* system [3]:
	- Transwell with 0.04 mL aqueous fluid
	- Separated from basolateral receptor compartment by a semi-permeable membrane
	- CFD and *in vitro* results for 3 different corticosteroids each delivered as drug particles

[3] Arora et al. (2010) Pharm Res 27:786-795

Validation – *In Vivo* Clearance

In vivo study of Shah et al. [4]:

- Radiolabelled solution delivered as a nasal spray that was not absorbed by epithelium
- Gamma scintigraphy used to determine nasal clearance
- *In vivo* conditions reproduced with CFD model

PK Model Constants

- *In vivo* study (Daley-Yates et al). [5]
	- 800 µg dose of MF
- \triangleright Reasonable values of PK constants lead to accurate predictions of *in vivo* C_{max}, t_{max} , and bioavailability (F)
	- C_{max} relative diff: 1.2%
	- T_{max} relative diff: 17%
	- F relative diff: 0%

[5] Daley-Yates et al. (2004) Eur J of Clin Pharm 60:265-268

Applications and Results

Drug plasma profiles are sensitive to local nasal deposition patterns

Effect of Spray Angle

> Nasal spray insertion angles of 30, 40, & 50°

 \triangleright MP deposition fraction $(DF) = 13$ \longrightarrow 33%

• Relative diff: 87%

 \triangleright C_{max} = 19 \rightarrow 35 pg/mL • Relative diff: 56%

 C_{max} is sensitive to changes in deposition

C_{max} is a better indicator of local nasal deposition compared with bioavailability estimates

Bioavailability Estimates

- \triangleright Nasal spray insertion angles of 30, 40, & 50°
- For all three cases:
	- $F = 0.46%$
	- Relative diff: ~0%
- Arises from fluid connection between NV and MP
- Requires NV dose to remain undisturbed

Suspended drug particle size may not have a large impact on local delivery

Effect of Particle Size

- \triangleright Same nasal spray with 3 or 5 um suspended drug particles
	- Minimal changes in drug plasma profile
	- Only a small change in total epithelial absorption that disappears after 6 minutes

Suspended particle size may not have a large impact on local delivery

or does it?

Microscale Nasal Absorption

Suspended drug particles sizes of 1 to 5 µm

- Absorption enhancement factor (AEF)
- Microscale dose/area relative to total dose/total area

So nasal drug deposition patterns strongly affect PK profiles…

Can we use PK profiles to establish equivalent local delivery?

PK and Bioequivalence

 \triangleright Yes, it is possible, but it may not be practical

- We have observed large differences in nasal deposition and drug plasma profiles for:
	- Disturbing the NV dose over an 8 hour period
	- Effect of insertion angle (same geometry)
	- Effect of nasal inhalation (see Azimi et al. poster)
	- Effect of nasal geometry (see Azimi et al. poster)

 A patient-specific crossover study is a minimum requirement to reduce these effects, which are difficult to control in clinical studies

A direction forward…

A Direction Forward

 \triangleright The challenge remains "equivalent local delivery"

• Same local dose concentration profile

An *in vivo* / *in vitro* / *in silico* approach offers a solution

- Conduct a small (~3-5 subjects) *in vivo* study:
	- (i) Radiolabeled local nasal deposition study to determine clearance
	- (ii) Systemic PK
- Use a standardized protocol and record:
	- (i) Spray nozzle and head angles
	- (ii) Spray nozzle position in nostril
	- (iii) Inhalation profile and post delivery behavior
	- (iv) Nasal geometry with MRI or CT

A Direction Forward

In vitro & *in silico* models validated using i*n vivo* data

- *In vitro* model establishes same local deposition in individual nasal models under controlled conditions
- *In silico* model establishes the same epithelial tissue dose during dissolution, absorption, and clearance • Nasal-DAC model

 \Rightarrow Similar bioequivalence issues and solutions arise with inhalation aerosol products

Conclusions

> PK profiles are sensitive to regional nasal deposition \bullet C_{max} was a reasonable quantitative marker

- Drug particle size (1-5 µm) did not affect MP absorption
	- Microdosimetry profiles are strongly affected
- Difficult to achieve equivalent local dose *in vivo*
	- Local dose is sensitive to a number of uncontrolled factors
- An *in vivo* / *in vitro* / *in silico* method provides a solution
	- Can be applied to evaluate local and systemic doses

Acknowledgements

- This study was supported by Award U01 FD004570 and Contract HHSF223201310223C from the DHHS, FDA.
	- Views expressed in this presentation do not necessarily reflect the official policies of the Department of Health and Human Services; nor does any mention of trade names, commercial practices or organizations imply endorsement by the United States Government.

 \triangleright This project is part of a collaboration between the University of Florida (Guenther Hochhaus), the University of Bath (Jag Shur and Rob Price) and VCU.