Liposomal Doxorubicin Under Microconfinement and Microscopy

2019.11.05 <u>Kuo-Tang Liao</u>, Craig R. Copeland, Ja Hye Myung, Darby Kozak, Samuel M. Stavis

Disclaimer

This presentation reflects the views of the author and should not be construed to represent FDA's views or policies

Session Description and Objectives

- We introduce a method to measure multiple characteristics of particlebased therapeutics, including:
 - Suspension concentration
 - Particle size distribution
 - Encapsulation and dose

- Technical aspects of our work:
 - Device-enhanced optical microscopy
 - Single-particle tracking and sizing
 - Light-scattering and fluorescence
 - Precision, accuracy, and efficiency

Biography and Contact Information

FDA and NIST are working together to develop measurement methods for fundamental study and quality control of particle-based therapeutics

Kuo-Tang Liao

SEG/MND/PML/NISTORS/OGD/CDER/FDAkuo-tang.liao@nist.govkuo-tang.liao@fda.hhs.gov

NIST Measurements of particle-based therapeutics

 \rightarrow Electron microscopy is powerful but not practical for every measurement

Pharm

www.fda.gov

M. Cagdas et al., *Application of Nanotechnology Drug Delivery*, 2014 P. Wibroe et al., *Journal of Controlled Release*, 2016

NIST Nanoparticle tracking analysis (NTA) in a slit

→ Confinement improves precision of NTA but errors approach 15%

2019 Pharm

www.fda.gov

FDA

C. Haiden et al., Langmuir, 2014, Applied Physics Letters, 2016

Our idea: NTA in a slit with a pillar array

 \rightarrow Precision, accuracy, efficiency

NIST

K.-T. Liao and C. R. Copeland et al., In preparation, 2019

www.fda.gov

FDA

Liposomal doxorubicin under test

Darkfield

150 µm

www.fda.gov

FDA

Liposomal doxorubicin under test

Darkfield

50 µm

www.fda.gov

FDA

Liposomal doxorubicin under test

Darkfield after background subtraction

50 µm

www.fda.gov

FDA

Random walks in two dimensions

FDA

www.fda.gov

Aperture array for reference positions

www.fda.gov

NIST

C. R. Copeland et al., Light: Science & Applications, 2018

Pillar array for reference positions

Darkfield

150 µm

www.fda.gov

Accurate tracking and sizing of particles

www.fda.gov

FDA

2019 Pharm Sci 360

NIST

Encapsulation and dose measurements

NIST

2019 Pharm

50 µm

www.fda.gov

FDA

M. Cagdas et al., *Application of Nanotechnology Drug Delivery*, 2014 K.-T. Liao and C. R. Copeland et al., *In preparation*, 2019

Acknowledgments

National Institute of Standards and Technology U.S. Department of Commerce

Craig R. Copeland

Samuel M. Stavis

Ja Hye Myung

Darby Kozak

www.fda.gov

This project was funded by a FDA Nanotechnology Collaborative Opportunities for Research Excellence in Science grant and by an appointment to the Research Participation Program administered by the Oak Ridge Institute for Science

Toward precise, accurate, and efficient measurements of multiple characteristics of particle-based therapeutics

Questions?

Kuo-Tang Liao

SEG/MND/PML/NIST kuo-tang.liao@nist.gov ORS/OGD/CDER/FDA

kuo-tang.liao@fda.hhs.gov

National Institute of Standards and Technology U.S. Department of Commerce FDA U.S. FOOD & DRUG

NIST Various measurement methods for Doxorubicin

- X- ray Scattering
- Atomic Force Microscopy
- Dynamic Light Scattering
- Nanoparticle Tracking Analysis

The design of microfluidic device

www.fda.gov

FDA

Inference of liquid media properties

NIST

Pharm

www.fda.gov

FDA

NIST Uncertainty effect of temperature and viscosity

Pharm

www.fda.gov

Mean square displacement (MSD) analysis

K.-T. Liao and C. R. Copeland et al., In preparation, 2019

www.fda.gov

FDA

Mean square displacement (MSD) analysis

www.fda.gov

FDA

K.-T. Liao and C. R. Copeland et al., In preparation, 2019

Pharm

The necessity of widefield calibration

www.fda.gov

FDA

C. R. Copeland et al., Light: Science & Applications, 2018

NIST In situ reference material by photon beam

150 µm

www.fda.gov

First function – depth control

SiO_2 (20 nm) – Cr (200 nm) hard mask

 $SF_6 - C_4F_8$ ICP - RIE 2750 W

K.-T. Liao and C. R. Copeland et al., In preparation, 2019

www.fda.gov

FDA

NST Ex situ scanning probe surface profilometry

Etch depth = $4.871 \,\mu m \pm 0.009 \,\mu m$

K.-T. Liao and C. R. Copeland et al., In preparation, 2019

NST Fluorescence intensity as a probe of slit depth

K.-T. Liao and C. R. Copeland et al., In preparation, 2019

Pharm

www.fda.gov

FDA

Representative diameter distribution

www.fda.gov

Y. Barenholz, *Journal of Controlled Release*, 2012 K.-T. Liao and C. R. Copeland et al., *In preparation*, 2019