Recent advancements in dermal microdialysis to assess topical bioavailability and bioequivalence

Benjamin A. Kuzma - Postdoctoral fellow

MGH/HMS – Evans Group

LIUPharmacy

FDA Disclaimer

• The views and opinions presented here represent those of the speaker and should not be considered to represent advice or guidance on behalf of the U.S. Food and Drug Administration.

Dermal Microdialysis (dMD)

• MD is an *in vivo*, minimally invasive technique, that allows sampling of **unbound** molecules in the dermis and subcutaneous tissues

Microdialysis (Gain) Principle

Retrodialysis (Loss) Principle

Interstitial Fluid

Interstitial Fluid

Long Island University | April 30th, 2021

Where have we been?

 dMD has been utilized for numerous years with promising results yet more left to be desired

Benfeldt, Eva, et al. Journal of Investigative Dermatology 127.1 (2007): 170-178.

Ortiz, P. García, et al. Skin pharmacology and physiology 24.1 (2011): 44-53.

Consistency is KEY!

- Is the dMD probe stable?
- Can dMD specifically quantify topically applied drug?
- Is dMD sensitive to differences in local BA?
- Can dMD distinguish between formulations that have known differences in IVPT data?
- How reproducible is dMD?
- Are results between labs similar/dissimilar using standardized protocol?

dMD in vitro system suitability

Local BA of Metronidazole (MTZ) Study

- Are dMD probes sensitive to changes in the local dermal environment?
- What is the minimum distance between application sites for no cross talk?

Formulations

- Generic Gel: MTZ topical gel, 0.75% from Tolmar
- Generic Cream: MTZ topical cream, 0.75% from Fougera Pharma

Negligible Lateral Diffusion

- Theoretical distances from clinical dose (10 mg/cm²)
- ✓ Concentrations detected in LD probe were similar to those in the RD
- ✓ No significant trend moving away from application site
- ✓ No systemic redistributions Contributions in LD probe attributed to MTZ impurity in D₃-MTZ

Linear Dose-Response Relationship

✓ Significant exposure difference between gel and cream products at 10 mg/cm² (p = 0.009) and 30 mg/cm² dosing (p = 0.0005)

✓ Significant difference between slopes (p = 0.0042) with linear (R^2 >0.99) and proportional increase in AUC₀₋₄₈ with dose

 ✓ dMD able to discriminate between formulations and sensitive to different local bioavailabilities

dMD Probe Stable for 48-hr

✓ Correction factor compared over 12-hr intervals indicated that 3rd 12hr block was significantly different from the others

✓ Ability to correct concentrations by correction factor can account for random fluctuations

 \checkmark No probe fouling or deterioration over the course of the study duration

No significant covariate impact of on dPK

X TEWL has no significant correlation with dermal exposure:

Cream (R² = 0.484), Gel (R² = 0.256)

 \times No correlation between AUC_{0-48hr}/D and probe depth

Cream (R² = 0.068), Gel (R² = 0.0004)

Lack of Terminal Phase

 \times Unable to get reliable estimate of C_{max}

× Concentrations continue to either level off or increase after 24-hr

• The concentrations are plotted as the average of 4 time points with the corresponding averaged time midpoints.

Dose Duration Effect on dBA Study

- Does the dose duration impact dermal BA?
 - Formulations applied for:
 - 6-hr
 - 12-hr
 - 48-hr (no removal)
- Can we estimate the dermal disposition of metronidazole using dMD?

Kuzma, B.A., et al. (2018). Effect of formulation wipe-off time on topical bioavailability of metronidazole using dermal microdialysis, AAPS Annual Meeting. Washington D.C., November 2018.

Probe Depth Relationship

- From ultrasound images we can measure both probe depth and skin thickness and arrived at a probe depth ratio (PDR)
- Only moderate correlation (R² = 0.6) for the 6-hr gel but no real correlation for other dosing schemes (R² < 0.5) comparing Ln(AUC₀₋₄₈) vs PDR

Adequate Characterization of Dermal PK

- The cream 6-hr DD was significantly different from both the 12-hr DD and 48-hr DD for AUC₀₋₄₈, AUC₀₋₃₆, and C_{max}
- Terminal phase half-life estimated for 44 of 66 probes (6 probes from preliminary study)
- 6-hr DD comparison between cream and gel indicated no significant difference in exposure

Local dBA Comparison

- Different dBA for 12-hr and 48-hr dose duration
- How long would we need to conduct studies for a difference in dBA?

0,18

0.24

0.12

0.00

8-

6.

-N(pAUC)

6 hr Dose Duration

0:30

0.36

0.48

8-

0.60

Time Intervals (hr)

The observed dermal concentration profile results from:

Long Island University | April 30th, 2021

Dermal API delivery via dMD probe

- Identify steady state concentration (C_{ss})
- Measure the AUC under the selected steady state (shaded area)
- Calculate the dose delivered in that time interval:
 - $Dose_{t1-t2} = (C_{perfusate} C_{ss}) \times V_{perfused(t1-t2)}$
- Calculate clearance:
 - $Cl = \frac{Dose_{t1-t2}}{AUC_{t1-t2}}$
- Fit the best poly-exponential equation to the elimination-phase data;
- Estimate V_d:
 - E.g., if mono-exponential: $V_d = \frac{Cl}{k_a}$
 - More complicated if poly-exponential

MTZ Dermal Disposition

- Dermal elimination half-life after dermal infusion was 1.47 hr (19.5) (geo. mean (CV%))
- Average dose delivered from 5.5 9.5-hr was 3.5 ng \pm 0.8 (mean \pm SD; n=6)
- Average dermal volume of distribution was calculated as 0.12 \pm 0.06 mL (mean \pm SD, n = 6)

Kuzma B.A., et al. (2019) Estimation Of In Vivo Skin Permeation (Flux) And Cumulative Amount Input of Metronidazole Formulations in Mini-pigs' Dermis GRS/GRC – Skin Barrier Function of Mammalian Skin, Waterville Valley, N.H. **2019**.

dUIR Calculation

• UIR for mono-exponential elimination:

$$UIR = \frac{1}{V_d} \times e^{-k_e t}$$

Where V_d has units of mL and K_e has units of hr $^{-1}$

• Averaged dUIR for all probes and subjects:

 $dUIR = 10.1 \times e^{-0.47t}$

- dUIR can be used to deconvolve dermal microdialysis concentration data
- dUIR can also be used to convolve in vitro permeation testing data

MTZ dermal input kinetics

- Data indicate **flip/flop dermal PK**:
 - Absorption (permeation) from upper layer of the skin is a prolonged, sustained process

Kuzma B.A., et al. (2019) Estimation Of In Vivo Skin Permeation (Flux) And Cumulative Amount Input of Metronidazole Formulations in Minipigs' Dermis GRS/GRC – Skin Barrier Function of Mammalian Skin, Waterville Valley, N.H. **2019**.

Long Island University | April 30th, 2021

Rabbit MTZ BE study

- Can dMD be used to identify differences in local BA between:
 - Two types of vehicles (cream/gel)
 - Test vs. reference in same vehicle

- Brand Gel: MetroGel[®] topical gel, 0.75% from Prasco Labs
- Generic Gel: MTZ topical gel, 0.75% from Tolmar
- Brand Cream: MetroCream[®] topical cream, 0.75% from Galderma Laboratories
- Generic Cream: MTZ topical cream, 0.75% from Fougera Pharma

Senemar S, et al. (2019) Evaluating the Bioequivalence of Topical Dermatological Drug Products Containing Metronidazole Using Dermal Microdialysis: Preliminary Studies in Rabbits. AAPS 2019

Adequate BA and BE assessment

What components contribute to the variability?

Gel

8.04

• Total CV of log(AUC₀₋₂₄) between 42-55%

71.46

16.4

Cream

2.69

25.85

Senemar S, et al. (2019) Evaluating the Bioequivalence of Topical Dermatological Drug Products Containing Metronidazole Using Dermal Microdialysis: Preliminary Studies in Rabbits. AAPS 2019

Site

Benfeldt *et al.* (Lidocaine) Inter-subject variability – 61 % Intra-subject variability – 39 %

Benfeldt et al., JInvest Dermatol. 2007 Jan;127(1):170-8. Epub 2006 Jul 27

Ortiz et al. (Metronidazole) Inter-subject variability – 116-223%* Intra-subject variability – 30-39%*

Ortiz, P. García, et al. Skin pharmacology and physiology 24.1 (2011): 44-53.

75.56

Senemar *et al.* (Metronidazole) Inter-subject variability – 71-76 % Intra-subject variability – 24-28 %

Conclusions

- dMD methodology developed here was sensitive, selective, stable, and reproducible; however, ruggedness still requires investigation
- Study duration, dose-duration, topical dose, and application site location should be chosen with the utmost care
- Knowledge of the disposition function confirmed a **flip-flop PK scenario** after TDDP application
- The disposition function estimation allows for further exploration into the in vivo absorption function and potential IVIVRs
- dMD methodology has the potential to be implemented into BE assessment of TDDPs

Thoughts...

- The same dMD methodology developed here should be investigated by outside lab to determine its ruggedness
- Now we have a proposed method for dermal disposition what can we do with this?
- Excipient's role in absorption and/or disposition?
- We know there is no "One Size Fits All" Approach careful consideration into selection of tools from the *Toolbox of Methods*
- Systemic PK has tried and true fundamentals do these carry over to cutaneous PK?

Acknowledgments

Long Island University

- Dr. Grazia Stagni
- Dr. Sharareh Senemar Rucha Pathak
- Dr. Md Asif Ali
- Morasa Sheikhy

- Darshil Shah

• Dr. Andrew Litovsky

FDA – Office of Generic Drugs (OGD)/ **Office of Research and Standards (ORS)** • Dr. Priyanka Ghosh • Dr. Sam Raney

- Dr. Ying Jiang
- Dr. Markham Luke

- Dr. Elena Rantou
- Dr. Tannaz Ramezanli

Grant Support - USFDA U01FD005862

SUNY Downstate DCM

- Carol Novotney, DVM
- Liz Rivera
- Samuel Alphonse

Sommunities

AAPS Topical and Transdermal Community

How to Ask A Question...

NOTE:

If you do not <u>associate</u> your call in phone <u>number your web login</u> then you may not be able to click on the button in the bottom left to ask a question during the Q&A Session

Click this icon or dial *6 to get in the queue to ask a question.