

The University of Texas at Austin McKetta Department of Chemical Engineering

Stochastic and Deterministic Analysis of Reactivity Ratios in the Partially Reversible Copolymerization of Lactide and Glycolide

Louise Kuehster, Young Kuk Jhon, Yan Wang, William C. Smith, Xiaoming Xu, Bin Qin, Feng Zhang, Nathaniel A. Lynd

November 13, 2022

The University of Texas at Austin McKetta Department of Chemical Engineering

Thank you!

Poly(lactide-co-glycolide) (PLGA) is a biodegradable polymer that is used in pharmaceutical applications

Antimicrobial and Biodegradable PLGA Medical Sutures with Natural Grapefruit Seed Extracts. *Mater. Lett.* **2013**, *95*, 40–43. https://doi.org/10.1016/j.matlet.2012.12.090.

Junchuan Zhang; Hong Zhang; Linbo Wu; Jiandong Ding. Fabrication of Three Dimensional Polymeric Scaffolds with Spherical Pores. *J. Mater. Sci.* **2006**, *41* (6), 1725–1731. https://doi.org/10.1007/s10853-006-2873-7.

Long-acting drug implants

OZURDEX[®] Mechanism of Action | For HCPs https://hcp.ozurdex.com/mechanism-of-action (accessed Mar 27, 2021).

PLGA biodegrades to non-toxic products

OZURDEX[®] Mechanism of Action | For HCPs https://hcp.ozurdex.com/mechanism-of-action (accessed Mar 27, 2021).

Long-acting drug implants can improve patient outcomes

- Lower dosage frequency
- Better patient compliance
- Potentially lower drug toxicity

There are over 20 FDA-approved products which use PLGA as an excipient, but no generic version have been approved

Multiple characteristics affect PLGA degradation and drug release

Li, J.; Rothstein, S. N.; Little, S. R.; Edenborn, H. M.; Meyer, T. Y. The Effect of Monomer Order on the Hydrolysis of Biodegradable Poly(Lactic- *Co*-Glycolic Acid) Repeating Sequence Copolymers. *J. Am. Chem. Soc.* **2012**, 134 (39), 16352–16359. https://doi.org/10.1021/ja306866w.

Copolymer sequence is usually understood in terms of reactivity ratios

Copolymer sequence is currently understood in terms of reactivity ratios

Unfortunately, current models aren't sufficient for PLGA

PLGA is synthesized from cyclic dimers

Sequence is altered throughout the polymerization as a result of equilibrium

Transesterification scrambles sequence throughout synthesis

Even if we calculate accurate reactivity ratios, the sequence is also affected by transesterification

- Calculate accurate reactivity ratios that account for reversibility
- Measure kinetics of transesterification
- Link both to actual sequence through modeling

Equations describing PLGA copolymerization are complicated

		$r_1 = k_c c_c(t) c_i(t)$		
Initiation reactions				
		$r_2 = k_L c_L(t) c_I(t)$		
		$r_3 = k_{GG} c_{P_G}(t) c_G(t)$		
Forward polymerization reactions		$r_4 = k_{GL} c_{P_G}(t) c_L(t)$		
		$r_5 = k_{LG} c_{P_L}(t) c_G(t)$		
		$r_6 = k_{LL} c_{P_L}(t) c_L(t)$		
		$r_7 = k_{G-G} c_{P_{GGG}}(t)$		
Depolymerization		$r_8 = k_{G-L} c_{P_{GLL}}(t)$		
reactions		$r_9 = k_{L-G} c_{P_{LGG}}(t)$		
		$r_{10} = k_{L-L} c_{P_{LLL}}(t)$		Becau
Transesterification	$\left\{ \right.$	$r_{11} = k_T c_{ends} c_{esters}$	Y	the co which
	Ĺ			

$$\begin{aligned} \frac{dc_I}{dt} &= -r_1 - r_2 \\ \frac{dc_G}{dt} &= -r_1 - r_3 - r_5 + r_7 + r_9 \\ \frac{dc_L}{dt} &= -r_2 - r_4 - r_6 + r_8 + r_{10} \\ \frac{dc_{P_G}}{dt} &= r_1 - r_4 + r_5 + r_8 - r_9 \\ \frac{dc_{P_L}}{dt} &= r_2 + r_4 - r_5 - r_8 + r_9 \end{aligned}$$

Because of depolymerization reactions, we need to know the concentration of every possible polymer sequence, which gives 2ⁿ equations (n=max. degree of polymerization) Too many equations to solve

Two ways we can circumvent mathematical challenges

 Instead of integrating 2ⁿ deterministic equations, solve the problem stochastically

- Make some simplifying assumptions so that there are fewer equations to solve
- Preliminary data shows little glycolide reversibility and fast glycolide consumption → assume only lactide is reversible, and chain ends are always lactide by end of reaction

• Valid only for low glycolide composition

Two ways we can circumvent mathematical challenges

- Instead of integrating 2ⁿ deterministic equations, solve the problem stochastically
- Make some simplifying assumptions so that there are fewer equations to solve
- Preliminary data shows little glycolide reversibility and fast Divide the interval 0 to 1 according to glycolide consumption \rightarrow assume only lactide is reversible, the probability of each possible and chain ends are always lactide by end of reaction reaction (based on rate equations) Both models include a third reactivity ratio to composition represent lactide reversibility Generate a random number $r_1 = k_G c_G(t) c_I(t)$ $r_G = \frac{k_{GG}}{k_{CL}}, \qquad r_L = \frac{k_{LL}}{k_{LC}}, \qquad r_R = \frac{k_{L-L}}{k_{LL}}$ $r_2 = k_L c_L(t) c_I(t)$ $r_3 = k_{GG} c_{P_G}(t) c_G(t)$ $r_4 = k_{GL} c_{P_G}(t) c_L(t)$ Forward polymerization $r_5 = k_{LG} c_{P_I}(t) c_G(t)$ reactions $r_6 = k_{LL} c_{P_L}(t) c_L(t)$ Depolymerization $- r_{10} = k_{L-L}c_{P_{LLL}}(t)$ reactions

Kinetic data for PLGA has been collected

Increasing time/conversion

¹H NMR Spectroscopy was used to measure conversion

Experimental data with low glycolide content was fit to the simplified deterministic model

Stochastic modeling confirms accuracy of reactivity ratios

Reactivity ratio accuracy can be improved by fitting directly to the stochastic model

 $SSR(k_{GG}, k_{LG}, k_{LG}, k_{LL}, k_{G-G}, k_{G-L}, k_{L-G}, k_{L-L}) = \sum_{i=1}^{i=n_p} (p_G(t_i)) - p_{G,i})^2 + \sum_{j=n_p+1}^{n_p+n'_p} (p_L(t_{j-n_p}) - p_{L,j-n_p})^2$

PLGA reactivity ratios alone don't solve all the problems

Transesterification has a major effect on PLGA sequencing but is not captured in reactivity ratios

There is some disagreement about the best way to experimentally measure PLGA blockiness/sequence

We can further leverage the stochastic model to begin to solve these additional issues

New fitting methods enable analysis of complex copolymerization kinetics and sequence

Reactivity ratio determination which accounts for reverse reactions

Complex 13C NMR peak assignment for improved experimental sequence measurement

