

Prediction of Respimat® Inhaler Spray: Co-Flow Air Behavior

Maziar Kakhi, Ph.D. FDA Silver Spring, MD 20993 Maziar.kakhi@fda.hhs.gov

15th OpenFOAM Workshop Arlington VA, June 22-26, 2020

Disclaimer: The views expressed in this presentation are those of the author and do not reflect the opinion nor the policy of the FDA.

www.fda.gov

Outline

- Background
 - Respimat[®] Soft Mist[™] Inhaler (SMI)
 - Rationale for Study
- On-Going Experimental Evaluations
 - Particle Sizing and Flow Studies to Support Modeling
- CFD
 - Prediction of Flow Field through SMI without spray injection
- Summary

Respimat SMI Drug Products

- Combivent[®] Respimat[®]
 - Approved: 10/7/2011
- Striverdi[®] Respimat[®]
 - Approved: 7/31/2014
- Spiriva[®] Respimat[®]
 - Approved: 9/24/2014
- Stiolto[®] Respimat[®]
 - Approved: 5/21/2015
- Dosage Form: Metered Spray for Inhalation
- Treatment of chronic obstructive pulmonary disease (COPD)
- Site of action: Lung airways
- Complex drug-device product

Respimat Drug Product Delivery Mechanism

- Drug product is stored in a collapsible plastic bag inside an aluminum can.
- The trigger mechanism is cocked by rotating the base a half-turn, tightening (coiling) the spring.
- The capillary tube shifts down collecting drug, that is held in place by the one way valve.
- The dose release button disengages the spring; the capillary tube shifts up propelling drug product into the "Uniblock".

Respimat Drug Product Delivery Mechanism

- Uniblock is composed of a silicon wafer with filter channels etched onto it.
- Two liquid jets impinge at a set angle just in front of the nozzle forming the soft mist spray.

Key Inhaler Features

- No propellant.
- High fine droplet fraction (<5.8 μm) compared to pMDIs^{*} and DPIs[#].
- Initial soft mist speed ≈ tenth of aerosol cloud from pMDIs.
- Injection duration 1.5s (cf. 0.2s for pMDIs)

* pMDI: Pressurized metered-dose inhaler # DPI: Dry powder inhaler

Regulatory Rationale For Study

Current Landscape

- Four approved Respimat inhaler drug products on the market.
- No generics available.
- No product-specific guidances (PSGs) for Respimat.
- Office of Generic Drugs (OGD) is currently developing PSGs for Respimat.

Desired Outcomes

- Study aims to leverage experimental and modeling approaches to:
 - Gather physiologically-relevant data on the soft mist spray.
 - Predict sensitivity of regional deposition fraction of drug to certain spray and device characteristics.
 - Inform SMI-related PSG development.
 - Inform FDA's future SMI-related review efforts.
 - Generate credible data which may streamline bioequivalence recommendations.

On-Going Experimental Evaluations

Imaging

- High-speed (500 fps) videography and PIV to measure:
 - Spray direction Plume front velocity
 - Spray duration
- Transient plume velocity
- Spray angle (cone angle)
- Spray width

www.fda.gov

On-Going Experimental Evaluations

Imaging

PIV protocol:

- 2D co-flow of air (@ 28.3 L/min) emerging from Respimat inhaler mouthpiece without spray actuation.
 - Smoke particles (≈3µm) are used as PIV-seed
 - Validation of CFD single-phase model.
- With spray actuation (Striverdi & Spiriva) involving co-flow and quiescent air.
 - SMI particles are used as PIV-seed
 - Validation of CFD-DPM (Euler-Lagrange) two-phase model.

On-Going Experimental Evaluations

Particle Sizing

Measurements will support initialization of spray size distribution for simulations:

- Aerodynamic particle diameter being measured using a TSI 3321 aerodynamic particle sizer (APS)
 - measures the particle diameter using time of flight of the spray
- Volume-weighted particle diameter using laser diffraction
- APS and laser diffraction being used to study effect of:
 - Co-flow/quiescent air
 - Ambient and high relative humidity

CFD: Goals

- Validate single-phase simulation using PIV of smoke-laden co-flow air.
- Validate two-phase simulation (with SMI actuation):
 - Particle sizing measurements \rightarrow particle size distribution (PSD).
 - High speed videography \rightarrow spray cone angle & injection velocity.
 - PIV measurements \rightarrow discrete phase velocity field.
- Apply CFD model to predict influence of:
 - spray PSD,
 - spray angle,
 - spray velocity,
 - spray duration
 - on deposition in a mouth-throat geometry

Geometry Generation (ANSYS SpaceClaim)

www.fda.gov

CFD: Patches

Mesh Generation (CF-Mesh+)

- Inclusion of fillets at air vents, inner device and bottom of device casing
- Refinement of cells at wall boundaries to ensure that $Y^+ \leq 1$.
- Mesh refinement in the mouthpiece region and downstream thereof.

Mesh Generation (CF-Mesh+)

FDA

www.fda.gov

Effect of Processor # on $\max |\vec{U}_f|$

- 1.5M cells, max non-orthogonality 73.3°
- No fillets
- LES-WALE, max Courant # = 0.9,
- Solver: pimpleFoam
- Implausible $\max |\vec{U}_f|$ very localized.
- Lack of processor scalability.
- No improvement with use of other differencing schemes.

w/o FILLET

• OF v1906.

 $\max |\vec{U}_f|$ (or, max(|U|) in Y-axis of plots) is the maximum of the filtered velocity magnitude.

15

www.fda.gov

Effect of Fillets on $\max |\vec{U}_f|$

UMean and UPrime2Mean Probes (LES-WALE)

FDA

www.fda.gov

UMean Laminar, LES-WALE, k-ω SST-LM

Velocity at Nozzle (LES-WALE)

Velocity downstream of Mouthpiece (LES-WALE)

Velocity downstream of Mouthpiece (LES-WALE)

Measurement plane is downstream of mouthpiece outlet.

In-plane mean (time-averaged) filtered velocity

Time-average of 400 images of in-plane 'preliminary' PIV data from 4 tracer (smokeentrained) experiments. 21

www.fda.gov

- Numerous experimental approaches are being pursued to support the initialization and validation of the CFD models.
- CFD models of single-phase flow indicates strong sensitivity to geometrical treatment of sharp edges and choice of differencing schemes.
- Baseline (3.6M mesh) appears to demonstrate a balance between gridindependent solution, mesh quality and manageable size.
- Future work will build on experience generated thus far to examine Euler-Lagrange simulation and mouth-throat deposition studies.

Acknowledgements

CDER/OGD/ORS

- Ross Walenga
- Steven Chopski
- Andrew Babiskin
- Denise Conti
- Sneha Dhapare
- Kimberly Witzmann
- Liang Zhao

CDER/OGD/OB

- Zhen Xu

CDER/OPQ/OTR

- Changning Guo
- Nicholas Holtgrewe
- Geng Tian

CDER/OPQ/ONDP

Renishkumar Delvadia

CDER/OPQ/OLDP

- Dhaval Gaglani

CDRH/OSEL/DAM

- Suvajyoti Guha
- Brent Craven

Backup Slides

Initial & Boundary Conditions

Field Variable	Initialization	Surface (Patch)	Boundary Condition	
r (Dc)	0	Air inlet box	Pressure inlet	
<i>p</i> (Pa)	0	All other patches	Zero gradient	
		Air inlet box	Zero gradient	
<i>U</i> (m/s)	0	Outlet	flowRateOutletVelocity: 5x10 ⁻⁴ m ³ /s (=30 L/min)	
		All other patches	No slip (Fixed: 0)	
ν _{t,WALE} (m²/s)	0	All patches	Zero gradient	
		Air inlet box		
$v_{t,k-\omega}$ (m²/s)	0	Outlet		
		All other patches	nutkWallFunction:0	
ω (s ⁻¹)	Air inlet box 100 Outlet All other patch	Air inlet box	Fixed: from internal field	
		Outlet	Zero gradient	
		All other patches	omegaWallFunction	
		Air inlet box	Fixed: from internal field	
<i>k</i> (m²/s⁻²)	0.11	Outlet	Fixed: Zero gradient	
		All other patches	Fixed:Zero	
	0.64	Air inlet box	Fixed: from internal field	
$Re_{ heta}(-)$	0.64	All other patches	Zero gradient	
	1	Air inlet box	Fixed: from internal field	
γ(-)		All other patches	Zero gradient	

Discretization Schemes and Solution Solvers

	-	-	
	-		
_		41	
	-		l

fySchemes		fvSolution		
ddtSchemes default gradSchemes default grad(p)	backward; cellMDLimited Gauss linear 1.0; cellLimited leastSquares 1.0;	solvers p solver smoother tolerance reITol minIter 1; maxIter 300;	GAMG; symGaussSeidel; 1e-06; 0.01;	
divSchemes default div(phi,U) div(phi,k) div(phi,omega) div(phi,gammaInt) div(phi,ReThetat) div((nuEff*dev2(T(grad(U)))))	none; bounded Gauss linearUpwindV default; Gauss limitedLinear 1; Gauss limitedLinear 1; Gauss limitedLinear 1; Gauss limitedLinear 1; Gauss limitedLinear 1;	solvers "(U k omega gammaInt l solver smoother preconditioner tolerance reITol minIter maxIter	ReThetat)" PBiCG; symGaussSeidel; DILU; 1e-05; 0.01; 1; 100;	
laplacianSchemes default	Gauss linear limited 0.5;	"(p U k omega gammaInt ReThe \$"(p U k omega gammaInt Re reIToI	etat)" Final Thetat)" ; 0;	
interpolationSchemes default snGradSchemes	linear;	PIMPLE momentumPredictor nOuterCorrectors nCorrectors	yes; 1; 2 [.]	
default wallDist	limited 0.5;	nNonOrthogonalCorreactors turbOnFinalIterOnly	_, 0; no;	
method meshWave; corrected yes;		relaxationFactors equations ".*"	1;	

Turbulence Parameters at Nozzle (LES-WALE)

Velocity downstream of Mouthpiece (LES-WALE)

UPrime2Mean Laminar, LES-WALE, *k*-ω SST-LM

UPrime2Mean *k*-ω **SST-LM**

$\left| \overrightarrow{U}_{avg,f} \right|$ Probes (LES-WALE)

TKE Probes (LES-WALE)

Run Times

Model	Physical Time	Execution Time	Clock Time	Nproc*	# Nodes
	(s)	(h)	(h)	(-)	(-)
LES-Wale	1	215	216	48	4
Laminar	1	196	197	48	4
k-ω SST-LM	0.65	212	213	48	4

* Intel(R) Xeon(R) CPU E5-26200 @ 2.00GHz, 15M Cache

Large-scale cluster

- 421 nodes with 5,720 cores
- About 53 TB of RAM 1.2 PB of storage
- 40G Infiniband & 100G OPA network

Medium-scale cluster

- 82 compute nodes with 984 cores
- 63GB RAM per node, 180 TB storage
- Infiniband-connected CPUs