PBPK Modeling: Opportunities for Enhancements

William J. Jusko, Ph.D.

UNIVERSITY AT BUFFALO

State University of New York

Presented at the 2021 CRCG PBPK workshop on "Regulatory Utility of Mechanistic Modeling to Support Alternative Bioequivalence Approaches." Sept 30 & Oct 1, 2021

Declarations

- Member of Scientific Advisory Board of Simulations Plus and receives access to all software for UB Pharmaceutical Sciences.
- Receives complementary software from Certara on behalf of the UB Department of Pharmaceutical Sciences.
- Supported by NIH Grant R35 GM131800 "Mechanistic Pharmacokinetics and Pharmacodynamics".
- Other support: Gates Foundation, GSK.

Approaches to Extrapolation

Mager DE and Jusko WJ. Clin Pharmacol Ther. 83:909 (2008)

PBPK Models

Kenneth Bischoff

Robert Dedrick

KB Bischoff and RL Dedrick, J. Pharm. Sci. 57: 1346 (1968) J. Pharm. Sci. 59: 149 (1970)

"Physiologic modeling enables us to examine the joint effect of a number of complex inter-related processes and assess the relative significance of each."

(dCliver)/dt = [QH (Cin-Cout)-CLint Cout]/Vliver.

Added metabolism/CL to Fick's Law of Perfusion = WSM

Venous Equilibrium Model : WSM

Malcolm Rowland

Grant Wilkinson

Rowland M, Benet LZ, Graham G: Clearance concepts in pharmacokinetics. J Pharmacokin Biopharm <u>1</u>: 123 (1973)

Wilkinson GR, Shand DG: A physiological approach to hepatic drug clearance. Clin Pharm Ther <u>18</u>: 377 (1975)

Complexities in PBPK & Organ Disposition

- Model Assumptions (WSM, PTM, ...)
- Metabolic site
- Reversible metabolism, EHC
- Transporters (influx, efflux)
- Permeability versus flow
- Initial circulatory distribution
- Arterial versus venous blood
- **RBC efflux rate**
- Albumin-mediated cell uptake
- **Rapid** *k*_{off} from proteins
- Nonspecific binding
- Tissue heterogeneity

Hepatic Models

Ierapetritou et al, CTS Journal 2: 228 (2009).

Basic Hepatic Clearance Models

$$\frac{dC_{liver}}{dt} = \left[Q_H(C_{in} - C_{out}) - f_{up} CL_{int} \cdot C_{out}\right] / V_{liver}$$

WSM:
$$C_{out} = \frac{C_{liver} \cdot R}{K_P}$$
 $K_P = \frac{C_{liver,ss}}{C_{P,ss}}$

$$PTM: \quad \frac{C_{in}-C_{out}}{ln(\frac{C_{in}}{C_{out}})} \cdot \frac{R}{K_P} \quad \text{instead of } C_{out} \quad \begin{array}{c} f_{up} = fraction \ unbound \\ in \ plasma \\ R = Blood/Plasma \end{array}$$

in plasma

Winkler K, Keiding S, Tygstrup N. Clearance as a quantitative measure of liver function. In, "The Liver: Quantitative Aspects of Structure and Function" pp144-155, Karger-Basel 1973

Prediction of Human Metabolic Clearance from In Vitro Systems: Retrospective Analysis and Prospective View

David Hallifax • Joanne A. Foster • J. Brian Houston

Several assessments show suboptimal IVIVE for many drugs.

Ftorafur Metabolism in Rat Tissues

Tissue	CL _{int} ^a	Tissue	CL _{int} ^a
Lung	0.51	Stomach	0.68
Brain	0.72	Small intestine	4.84
Heart	0.69	Adipose tissue	4.20
Liver	78.72	Skin	16.21
Kidney	1.08	Muscle	31.25
Spleen	0.26	Blood	5.48
Pancreas	0.29	Plasma	

a CL_{int} (ml/min) x 10³ Oxidation Determined from tissue homogenate measurements.

Sakiya Y et al, Int. J. Pharmaceu. 25: 347 (1985).

Reversible Metabolism Occurs Often

Compounds Undergoing Reversible Metabolism

Compound Class	Metabolic Process	Examples
Arylamines	Acetylation	Procainamide, sulfonamides, 2-aminofluorene, dansone
Tertiary amines	N-oxidation	Imipramine, chlorpromazine, trimethylamine, nicotinamide
Alcohols/ketones aldehydes	Oxidation/reduction	Corticosteroids, estradiol, haloperidol, ketanserin, acetohexamide, trilostane
Lactones	Hydrolysis	Statins, canrenone
Sulfides	Oxidation	Captopril, cimetidine, albendazole, D-penicillamine, metiamide
Sulfoxides	Reduction	Sulindac, Sulfinpyrazone
Phenols	Sulfation	Dehydroisoandrosterone, estrone, dopamine
Carboxylic acids	Conjugation	Clofibric acid, salicylic acid, valproic acid, diflunisal
Hydrazines	Condensation	Hydralazine
Quinones	Epoxidation	Vitamin K ₁
Methylxanthines	Demethylation	Caffeine
Alkenes	Isomerization	All-trans-retinoic acid, acitretin
Arylpropionic acids	Epimerization	Ibuprofen, 2-phenylpropionic acid

H Cheng, WJ Jusko, Biopharm. Drug Disp. 14: 721 (1993).

Intestinal Excretion and Recirculation

D Zhang, C Wei, CECA Hop, MR Wright, M Hu, Y Lai, SC Khojasteh, WG Humphreys, J Med Chem, 64:7045 (2021) .

Hepatic clearance concepts and misconceptions: Why the wellstirred model is still used even though it is not physiologic reality?

KS Pang, YR Han, K Noh, PI Lee, M Rowland, Biochem Pharmacol, 169: 2019, 113596.

Extending WSM and PTM to Consider Permeability

Estimation of the minimum permeability coefficient in rats for perfusion-limited tissue distribution in whole-body physiologically-based pharmacokinetics, Jeong et al, EJPB 115:1 (2017).

$$V_T \frac{dC_T}{dt} = Q_T \cdot f_d \cdot \left(C_{art} - \frac{C_T \cdot R}{K_p}\right)$$

$$f_d = 1 - e^{-\frac{f_{up}PS}{Q_TR}}$$

Prediction of Tissue Permeability *PS* and PK in Rats Using *In Vitro* PAMPA Permeability

Model 1 (capillary-permeability model)
Model 2 (well-stirred vascular compartment)
Perfusion-limited model

PS & Q jointly determine tissue uptake

Model with Binding and Permeability Issues

Early Distribution Kinetics of Antipyrine in Dogs

Assuming $C_0 = Dose / Blood$ Volume is approximate.

PBPK Modeling of Arterial - Antecubital Vein Concentration Differences

DG Levitt, BMC Clin Pharmacol. 19;4:2 (2004).

Appreciable A-V differences occur in the first hour and then are close. Liver receives mostly portal venous blood.

DISPOSITION OF TACROLIMUS (FK 506) IN RABBITS Role of Red Blood Cell Binding in Hepatic Clearance

W Piekoszewski, FS Chow and WJ Jusko Drug Metab Disp 21: 690 (1993)

Efflux of drugs from RBC can be slow and is seldom assessed.

Rapid Transit of Biomarkers in Perfused Rat Liver: Indicator Dilution Studies

KS Pang, IA Sherman, AJ Schwab, W Geng, F Barker 3rd, JA Dlugosz, G Cuerrier, CA Goresky, Hepatology, 20: 672 (1994).

RBC and albumin traverse the rat liver in less than 2 min.

Albumin-Mediated Uptake Improves Human Clearance Prediction

N Li, A Badrinarayanan, K Ishida, X Li, J Roberts, S Wang, M Hayashi & A Gupta AAPS J 23, 1 (2021).

Kinetic determinants of hepatic clearance: Plasma protein binding and hepatic uptake

Observed hepatic uptake was between total and free drug. Fast *koff* allows tissue uptake of presumed bound drug.

"...some highly bound ligands have more efficient uptake than can be explained by their unbound fraction"

Bowman CM, Benet LZ, EJPS 123: 502 (2018)

M. BAKER & T. PARTON Xenobiotica, October–November 2007; 37(10–11): 1110–1134

Seeking Nonspecific Binding for In Vitro CL_{int}

$$cf_{u} = \frac{\left(\frac{1}{Dil}\right)}{\frac{1}{mf_{u}} - 1 + \left(\frac{1}{Dil}\right)}$$

Caution is needed in the use of the Kalvass-Maurer Equation and interpretation of results from cell and tissue dilution studies.

The *cfu* correction requires linear binding and is most accurate at low drug and high protein concentrations.

Jusko WJ, Molins EAG, and Ayyar VS, Seeking Nonspecific Binding: Assessing the Reliability of Tissue Dilutions for Calculating Fraction Unbound, Drug Metab. Disp., 48: 894 (2020).

Predicting Tissue: Plasma SS *K_n*

Poulin & Theil method

$$Kp = \frac{\left[K \cdot \left(V_{nlt} + 0.3V_{pht}\right)\right] + \left[\left(V_{wt} + 0.7V_{pht}\right)\right]}{\left[K \cdot \left(V_{nlp} + 0.3V_{php}\right)\right] + \left[\left(V_{wp} + 0.7V_{php}\right)\right]} \cdot \frac{fu_{pht}}{fu_{t}}$$

adipose :
$$K = D_{vo:w}^*$$

other : $K = P_{o:w}$

0.W

$$\log P_{vo:w} = 1.115 \log P_{o:w} - 1.35 \text{ Leo, Hansch} fu_t = \left[\left(1 + \left(1 - fu_p \right) / fu_p \right) \cdot RA_{tp} \right]$$

 V_{nlt}, V_{pht}, V_{wt} : Volume fraction of neutral lipids, phospholipids, water RA_{tr} : Albumin ratio tissue : plasma

Predicting *K^{<i>p*} **is Approximate**

SCIENCE + SOFTWARE = SUCCESS

Lukacova – AAPS Annual Meeting 2008

PBPK Modeling of Chloroquine in Rats

13:433 (1982).

PBPK of Chloroquine in Rat Tissues

Assmus F, Houston JB ,Galetin A Incorporation of lysosomal sequestration in the mechanistic model for prediction of tissue distribution of basic drugs. Eur J Pharm Sci 109:419 (2017)

> Assessing intra-tissue drug concentrations requires imaging or assumptions.

Minimal PBPK Models May Suffice

Summary

- Basic PBPK models have served well to understand integration of kinetic and physiologic functions.
- Prediction methods utilizing in vitro assessed drug properties are helpful but approximate.
- Numerous complexities in PBPK need better (enhanced) consideration.
- Augment PBPK with rigorous verification.

PBPK Modeling:

The pot of gold still awaits in seeking perfection, but the journey is highly worthwhile.

Photo by WJ Jusko near Salamanca, NY