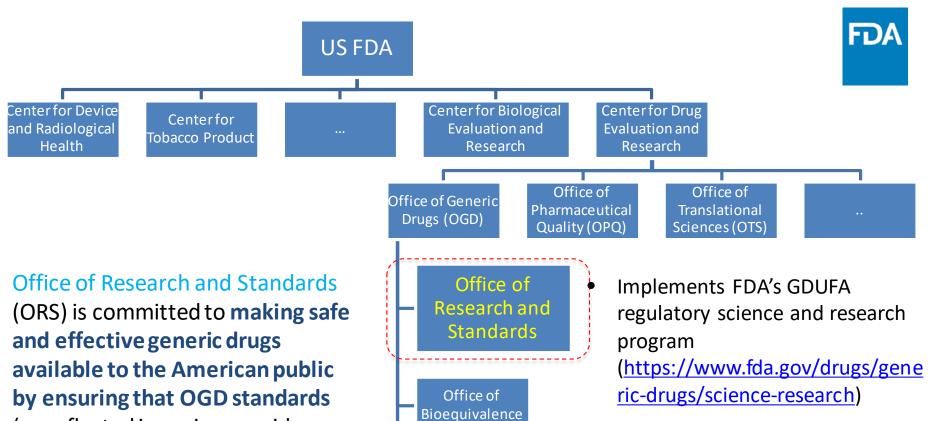


Regulating Generic Nanotechnology Drug Products: Guidance and Standards

Wenlei Jiang, Ph.D. Senior Science Advisor

Office of Research and Standards
Office of Generic Drugs
Center for Drug Evaluation and Research (CDER), U.S. FDA


2019 Global Summit of Regulatory Science Stresa, Italy

September 26, 2019

Disclaimer

This talk should not be construed to represent U.S. FDA's views or policies. The mention of commercial products, their sources, or their use in connection with material reported herein is not to be construed as either an actual or implied endorsement of such products by the U.S. Department of Health and Human Services.

(ORS) is committed to making safe and effective generic drugs available to the American public by ensuring that OGD standards (as reflected in reviews, guidance, and communications to applicants and the public) continue to be based on the best currently available science and the results of the regulatory science research.

 Provides pre-submission scientific advice on equivalence standards

 Provides consults and reviews of complex scientific issues

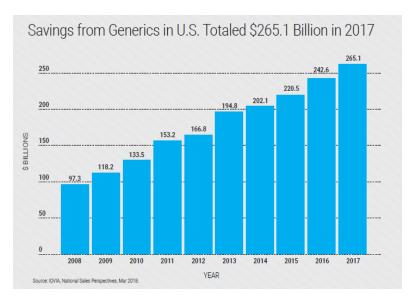
 Ensures therapeutic equivalence of approved generic drugs

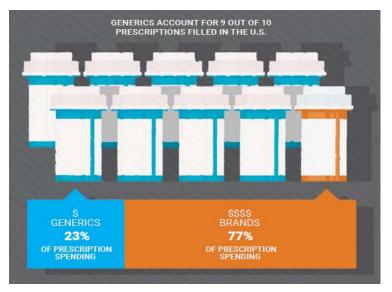
www.fda.gov

Office of Generic

Drug Policy

Office of

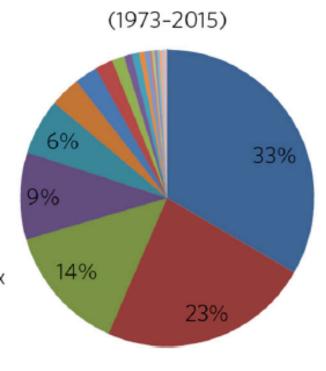

Regulatory


Operations

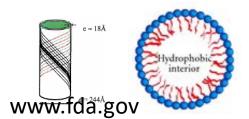
Generic Drugs

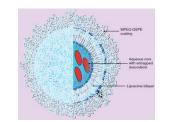
- Generic drugs are "copies" of their respective reference listed drugs (RLDs)
- Generally, this means the same active ingredient(s), conditions of use, route of administration, dosage form, strength, and (with certain permissible differences) labeling and is bioequivalent

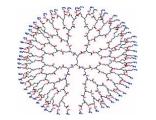
The evolving landscape of drug products containing nanomaterials in the United States


Sheetal R. D'Mello, Celia N. Cruz, Mei-Ling Chen, Mamta Kapoor, Sau L. Lee and Katherine M. Tyner*

- Nanocrystal
- Emulsion
- Iron-polymer complex
- Micelle
- Drug-protein complex
- Drug-polymer complex
- Dendrimer
- Polymeric NP
- Nanobubble

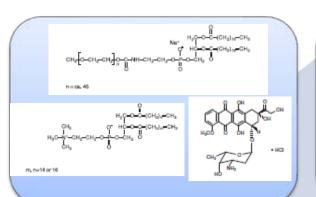

- Drug-lipid complex
- Drug-metal complex
- Protein NP
- Drug NP
- Solid lipid NP
- Nanotube
- Metal-protein complex
- Metal-nonmetal complex
- Metal-polymer complex

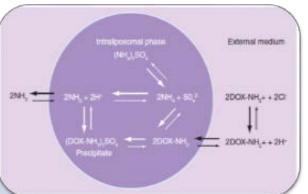

FDA Approved Nanotechnology Products RDA



	Examples							
Platform	Name	New Drug	Indication	1 st Abbreviated New Drug				
		Application		Application (ANDA)				
		(NDA) Approval		Approval				
Liposome	DOXIL® (Doxorubicin)	1995	Cancer	2013				
Inorganic	FERRLECIT® (Sodium ferric	1999	Anemia	2011				
nanoparticle	gluconate complex)							
Protein	ABRAXANE® (Paclitaxel)	2005	Cancer	None				
nanoparticle								
Polymer	MACUGEN® (Pegaptanib	2004	Macular degeneration	None (Not a				
nanoparticle	sodium)			complete list)				
Emulsion	RESTASIS® (Cyclosporine)	2002	To increase tear	None				
			production					
Lipid complex	AMPHOTEC®	1996	Invasive aspergillosis	None				
	(Amphotericin B)							
Nanotube	SOMATULINE DEPOT®	2007	Acromegaly	None				
	(Lanreotide acetate)							
Nanocrystal	TRICOR® (Fenofibrate)	2004	Hypercholesterolemia	2011				
Micelle	TAXOTERE®(Docetaxel)	1996	Cancer	None				

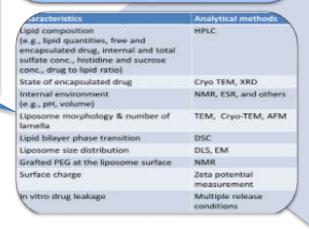
U.S. FDA Guidance Related to Nanotechnology Products

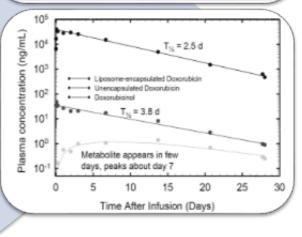



Vlieger, J, et al. Report of the AAPS Guidance Forum on the FDA Draft Guidance for Industry: Drug Products, Including Biological Products, that Contain Nanomaterials. The AAPS Journal (2019) 21: 56

U.S. FDA Product-Specific Guidance for Doxorubincin HCl Liposomes

Qualitative (Q1) and Quantitative (Q2) sameness





Same remote loading manufacturing process

No details about he methods

Equivalent physico-chemical characteristics

Equivalent free and liposome associated drug exposure

https://www.fda.gov/drugs/guidances-drugs/product-specific-guidances-generic-drug-development

Standards

- Measurement standards
 - International systems of units
- Reference standards*
- Materials that are certified by a national standards laboratory to verify a quantitative measurement.
- Documentary standards
- agreed-upon terminology or standard language; means for conducting measurements; performance characteristics of instruments or commercial products

www.fda.gov

https://www.nano.gov/you/standards

Contains Nonbinding Recommendations

Draft - Not for Implementation

CDER's Program for the Recognition of Voluntary Consensus Standards Related to Pharmaceutical Quality Guidance for Industry¹

This draft guidance, when finalized, will represent the current thinking of the Food and Drug Administration (FDA or Agency) on this topic. It does not establish any rights for any person and is not binding on FDA or the public. You can use an alternative approach if it satisfies the requirements of the applicable statutes and regulations. To discuss an alternative approach, contact the FDA staff responsible for this guidance as listed on the title page.

I. INTRODUCTION

10

12

13

15 16

21 22 23

25

26

27

FDA's participation in the development and use of technical voluntary consensus standards² has been integral to the execution of FDA's mission. For example, FDA has used such standards to develop and/or evaluate performance characteristics of dosage forms, testing methodologies, manufacturing practices, product standards, scientific protocols, compliance criteria, ingredient specifications, labeling of drug products, and other technical or policy criteria.

This guidance describes a proposed program at FDA's Center for Drug Evaluation and Research (CDER) to make public a comprehensive listing of informally recognized voluntary consensus standards related to pharmaceutical quality. CDER is issuing this draft guidance to obtain public comments on the proposed program. After CDER considers submitted comments, CDER will establish this program and describe it by publishing a final guidance.

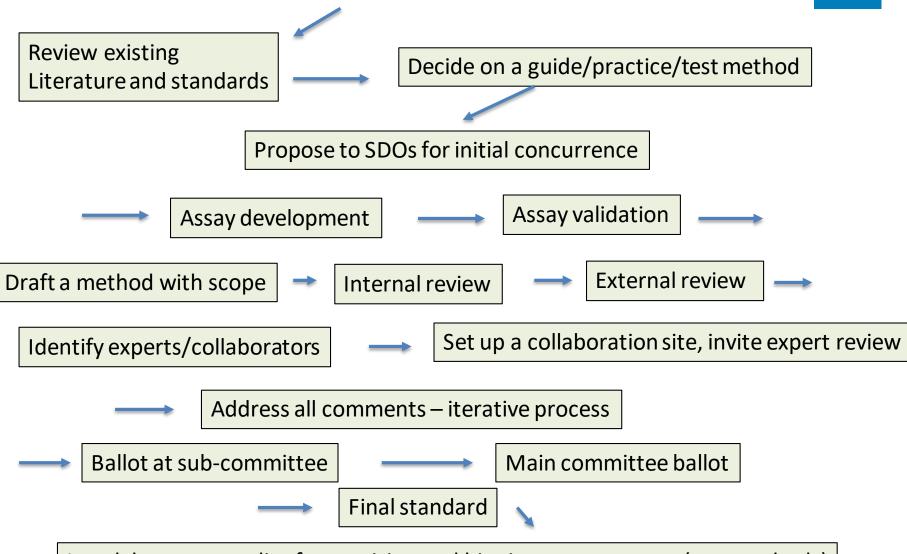
This program, once established, will facilitate submissions by external stakeholders and CDER, staff proposing voluntary consensus standards related to pharmaceutical quality for informal

a standard that is developed or adopted by domestic and international voluntary consensus standards bodies ... These bodies often have ... policies that include provisions requiring that owners of relevant patented technology incorporated into a standard make that intellectual property statishile to implementary of the standard on non-discriminatory and royally-free or reasonable royally terms.

Office of Management and Budget Circular A-119 Ravised, Federal Participation in the Development and Une of Voluntary Conservate Standards and in Conformity Assessment Activities (proised on Jamany 27, 2016), available at https://www.whitehouse.gov/files/comb/circulary A119/tersined_circular_a-119_as_of_1_22.pdf, at 6. Voluntary conservate standards bodies refer to any "association, organization, or technical society that plans, develops, establishes, or coordinates voluntary consensus standards using a voluntary consensus standards development process that includes (specific) attributes or elements." Id. Section V.A of this guidance describes these starbutes or elements.

https://www.fda.gov/regulatory-information/search-fdaguidance-documents/cders-program-recognition-voluntaryconsensus-standards-related-pharmaceutical-quality

^{*} The term reference standard here is different from the reference standard used in Orange Book: Approved Drug Products with Therapeutic Equivalence Evaluations.


¹ This guidance has been prepared by the Office of Pharmaceutical Quality in the Center for Drug Evaluation and Research at the Food and Drug Administration.

² In this guidance, the phrase voluntary consensus standard refers to

Documentary consensus standards development

Identify Standard to be developed through stakeholder engagement

Interlaboratory studies for precision and bias in measurements (test methods)

Log in •

Links to Relevant Activities

ANSI-NSP

ASTM E56 Committee

BAM NanoScale Reference Materials Database

IEC TC 113

Nanotechnology standardization for electrical and electronic products and systems

ISO TC 229

Nanotechnologies

TAPPI Nanotechnology

Contact Us

Published Documents	Documents Under Development	Government Documents

Clicking the designated number listed under the "Record #" category displays the full contents of a particular entry.

Filters

Items found: 154

Record #	Source (e.g. developer/organization)	Acronym (e.g. ISO, IEC)	Identifier (e.g. document designation number)	Title of document	Scope/description	Keywords	Type o
137	International Organization for Standardization	ISO	TR 19733	Nanotechnologies - Matrix Of Properties And	This document provides a matrix which links key	Graphene, 2-d materials, measurement	a. Star
				Measurement Techniques For	properties of graphene and	methods, structural	

Graphene And

Related Two-

Materials

Dimensional (2D)

related...

properties

12

ADVANCED REVIEW

Mapping of the available standards against the regulatory needs for nanomedicines

Blanka Halamoda-Kenzaoui¹ | Uwe Holzwarth¹ | Gert Roebben² | Alessia Bogni¹ | Susanne Bremer-Hoffmann¹

BOX 1

MAJOR GAPS IN STANDARDS FOR NANOMEDICINES

- 1. Methods for:
 - Drug loading and drug release from nanocarriers
 - Evaluation of the interaction with the immune system, in particular immunogenicity
 - Investigation of the protein corona
 - Detection of nanomaterial in biological tissues
- 2. Guidance for assessment of the comparability of methods
- 3. Reference materials relevant for nanomedicine
- 4. Evaluation of the suitability and recognition of standards developed in other sectors

Liposome Standard Needs Top Priorities

- Terminology-liposome specific
- Asymmetric flow field flow fractionation (AF4)
- Lipid excipient stability/degradation/component analysis
- Determination of liposomal encapsulated and free drug/separation of encapsulated and free drug
- Stability of liposome (including in-use stability)
- In vitro drug release testing procedures

Continued Development of Product-Specific Guidances

FDA published product-specific equivalence guidance for nanotechnology drug products

doxorubicin HCl liposome injection
verteporfin liposome injection
amphotericin B liposome injection
daunorubicin liposome injection
sodium ferric gluconate injection
ferumoxytol injection
iron sucrose injection
cyclosporine emulsion
lanreotide acetate injection
paclitaxel albumin-bound particles for injectable suspension

••••

(Not a complete list)

Continued Efforts to Promote Harmonization on Evaluation Criteria

U.S. FDA Doxorubicin **HCl liposomes Product-**Specific Guidance (Recommended 2010, most recent revision 2018)

https://www.fda.gov/drugs/gu idances-drugs/productspecific-guidances-genericdrug-development

European Medicines Agency (EMA) **Doxorubicin HCl** liposomes Product-Specific Guideline (Recommended 2018)

http://www.ema.europa.eu/docs/en GB/document library/Scientific guid eline/2018/06/WC500251058.pdf

International Pharmaceutical Regulators Programme (IPRP) Nanomedicine Working Group

ICH Reflection Paper

Further Opportunities for Harmonization of Standards for Generic Drugs¹

Executive Summary

This reflection paper outlines a strategic approach for developing and enhancing ICH guidelines to support the harmonization of scientific and technical standards for generic drugs. As part of this approach, this paper outlines recommendations to develop a series of ICH guidelines on standards for demonstrating equivalence (e.g., bioequivalence) for (1) non-complex dosage forms and (2) more complex dosage forms and products. To accomplish this work, it is proposed to establish a generic drug discussion group to assist in assessing the feasibility of harmonization of standards for generic drugs and to prioritize work areas.

Continued Development of Drug Product Characterization Methods

Physico-chemical characterization

- Particle size/distribution
- Surface property
- Drug state
- In-vitro dissolution

Biological performance test via in vitro test methods

- Production of nitric oxide (NO) by macrophages in vitro.
- Internalization by phagocytic cells in vitro
-

Liposome Physico-chemical Characterization

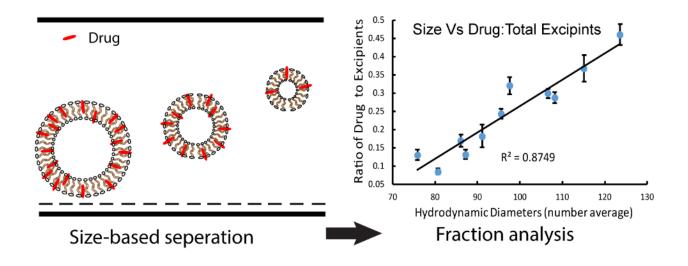
Liposome components

- Lipids
- Unencapsulated drug vs liposome associated drug

...

Liposome higher order structure

- Particle size
- Morphology
- Lamellarity
- Surface characteristics of the liposomes
- Liposome phase transition temperature


Liposome performance

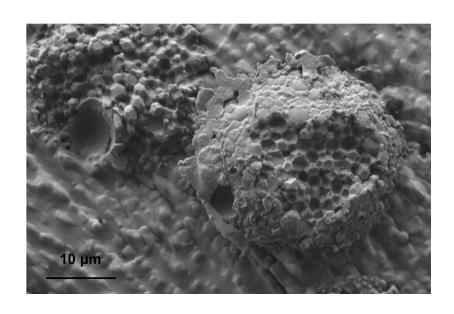
In vitro release

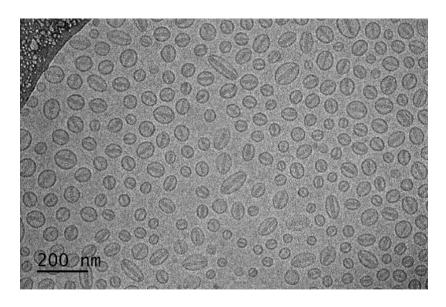
Quantification of Lipid Excipients and Active Pharmaceutical Ingredients (APIs) in Liposomes

17

International Journal of Pharmaceutics 569 (2019) 118603

Evaluation of size-based distribution of drug and excipient in amphotericin B liposomal formulation


Desiree Van Haute^a, Wenlei Jiang^{b,*}, Thilak Mudalige^{a,*}


^a Arkansas Laboratory, Office of Regulatory Science, Office of Regulatory Affairs, US Food and Drug Administration, Jefferson, AR 72079, United States

b Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993, United

Morphological Characterization of Liposome Products by Cryo-Transmission Electron Microscopy (TEM)

Bupivacaine Liposomes

Doxorubicin HCl Liposomes

Image Courtesy of Yong Wu and Jiwen Zheng

Optimize Cryo-TEM experimental conditions and standardize analytical procedures

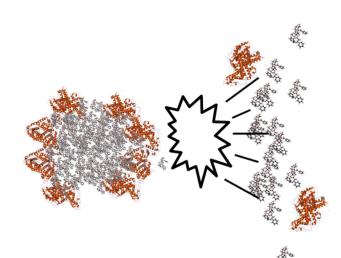
Determination of Labile Iron in Iron Complex

Table 1 Summary of labile iron assays evaluated in vitro

Labile iron assay	Assay method	Approximate LOD ^a	Practical limitations	In vitro limitations		
Rhodamine fluorescence Conversion	fluorescence		Reaction product is very sensitive in ambient conditions and degrades rapidly.	Abolished signal in the presence of agent complex.		
Bleomycin detectable iron (BDI)	Redox active iron	10 μ M Fe	Multiple reagents and pipetting steps required may reduce accuracy. Narrow assay dynamic range (10-100 μ M).	Strong interference in the presence of agent complex.		
Directly chelatable iron (DCI): FL-DFO	Chelatable iron	2 μ M Fe	Narrow assay dynamic range (\sim 2- \sim 60 μ M).	Abolished fluorescence in the presence of agent complex.		
HPLC-DFO	Chelatable iron	50 μM Fe ^b	Duration to complete analysis.	Apparent kinetic increase of labile iron upon incubation with DFO when agents are present (correctable using kinetic analysis to back-calculate labile iron at $t=0$).		

^aThe assay limit of detection (LOD) as employed was estimated in y as the intercept plus 3 times the standard error of the fit.

A. Barton Pai, D. E. Meyer, B. Bales, V. Cotero, M.P. Pai, N. Zheng, W. Jiang, Performance of redox active and chelatable iron assays to determine labile iron release from intravenous iron formulations. Clin Transl Sci. 2017 May;10(3):194-200.


Table 1Summary of *in vitro* rate of release constant (iKr) and the maximum labile iron concentration (iCmax) by formulation (estimate [95% confidence interval]).

iKr (h ⁻¹)	iCmax (μM)
0.0369 [0.0326, 0.0411]	138 [115, 161]
0.0318 [0.0256, 0.0381]	595 [572, 618]
0.0282 [0.0237, 0.0327]	411 [392, 430]
0.0277 [0.0231, 0.0323]	155 [144, 166]
0.0263 [0.0229, 0.0296]	278 [254, 302]
0.0442 [0.0362, 0.0521]	174 [166, 182]
	0.0369 [0.0326, 0.0411] 0.0318 [0.0256, 0.0381] 0.0282 [0.0237, 0.0327] 0.0277 [0.0231, 0.0323] 0.0263 [0.0229, 0.0296]

^bRoutinely achievable, sufficient for scope of work.

ABRAXANE Behavior Upon Dilution

Paclitaxel protein-bound suspensions undergo a burst release below a critical concentration. Particles rapidly dissolve releasing drug into solution.

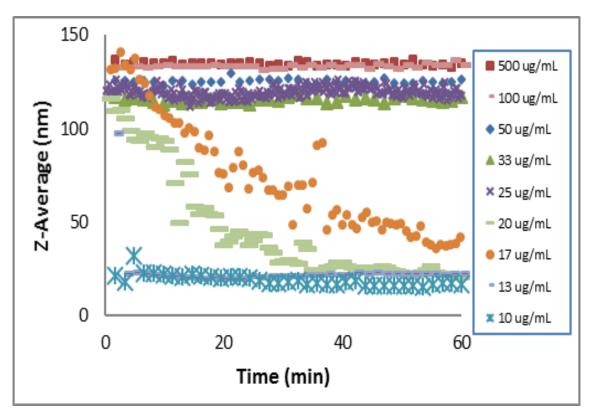


Image courtesy of Peter Petrochenko

Continuous Monitoring of Albumin-Bound Paclitaxel Dissolution Profiles Using Dynamic Light Scattering and In Situ UV/Vis Fiber-Optic Probes. Peter Petrochenko, Sook Wong, Yong Wu, Jiwen Zheng, Xiaoming Xu, Stephanie Choi, Darby Kozak. AAPS Denver, CO (Nov 13–17, 2016)

20

Considerations on Characterization Methods to Standards Development

- Most methods highly product-specific
- Multiple methods developed by different labs
- Advanced analytical methods vs readily available methods
- Biorelevant dissolution vs standard dissolution methods
- Interlaboratory selection
- Standards development timeline
- Protocol vs standard

Current status of the proposed work items

Work item	category	Assay	Assay develop ment	Assay validatio n	Work item draft	Initial revie w	Collaboration area/draft comments	Revi ew	Subc ommi ttee Ballot	Main committe e	Final Standard
	Standard Practice	Cryo-TEM of Liposomes	✓	✓	✓	✓	✓	✓	✓	✓	E3143- 18b
WK60373	Test method	Chemotaxis	√	✓	✓	✓	✓	✓	✓		
WK60554	Test method	Nitric oxide	✓	✓	✓	✓	✓	✓			
WK60553	Guide	<u>Phagocytosis</u>	✓	√	✓	✓	✓				
WK67980	Test method	PEG coating quantitation HPLC-ELSD	✓	✓	✓						
WK67984	Test method	Lipid quantitation UPLC-MS	✓	✓	✓						
WK67983	Test method	Lipid quantitation HPLC-ELSD	✓	✓	✓						
WK67982	Test method	Lipid quantitation HPLC-CAD	✓	✓	✓						
WK63310	Guide	Hyperspectral imaging	√								

Summary

 Documentary standards are complementary to product-specific guidance for generic nanotechnology drug product development

- To support generic nanotechnology drug product development and review
 - Continue developing product-specific guidance
 - Promote harmonization of assessment criteria

Support characterization method development into standards

Acknowledgements

OGD/CDER/FDA

Lei Zhang

Robert Lionberger

NCTR/FDA

Anil Patri

OPQ/CDER/FDA

Kathryn Tyner

Thank You

Any question? wenlei.jiang@fda.hhs.gov